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I. INTRODUCTION 

Since the earliest days of the quantum mechanical theory of molecular 

structure, the independent particle model has held a dominating influence. 

It has been very successful qualitatively, and sometimes quantitatively, 

in explaining the properties of atoms and molecules. It is true that for 

many properties one must go beyond this very popular model to obtain even 

qualitatively correct conclusions, and the best way of refining the model 

is now the subject of much current investigation and debate in quantum 

chemistry. On the other hand, the independent particle model itself 

deserves close examination, and its results have not always been clearly 

understood. 

In order to review the current situation, we will first discuss 

briefly the foundations of the independent particle model as applied to 

closed shell ground states. Approaches to refining the model will then 

be mentioned. Finally, the relations of each of the three main sections 

of this thesis to the general picture will be outlined. 

A. Brief Survey of the Independent Particle Model 

The independent particle model in its simplest form ignores all 

interactions between electrons, and, for the total system's ground state, 

results in all electrons occupying the lowest one-electron orbital 

e.g., the Is hydrogenie orbital for atoms. Because of the resulting 

separability of the hamiltonian operator, this corresponds to a simple 
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product wave function for the N electrons, viz.,^-

fs.p. = 4(1) *1(2) ' ' ' 'l<n> (1-1-1) 

If the average mutual coulombic interactions of the electrons were 

taken into account at this point, the electrons would come to occupy a 

somewhat expanded lowest orbital, with a total wave function of the same 

form as above. This corresponds to the ultimate independent particle 

model, for Bosons. 

However, since electrons are Fermions, effects much stronger than 

their mutual coulombic interactions take place between those with like 

spins, i.e., the effects of the Pauli exclusion principle, as expressed 

through the antisymmetry of the wave function and the resulting "Fermi 

holes". Thus a much better initial refinement of the simplest model is 

to neglect all coulombic interactions, but demand that the wave function 

be antisymmetric with respect to the interchange of coordinates of any 

two electrons. This applies to space and spin coordinates combined. The 

hamiltonian still demands that we use a product (or linear combination of 

products, with each of the products differing only in the permutation of 

electrons) of N orbitals for the one electron problem. The lowest 

energy wave function which satisfies both these requirements is the anti-

symmetrized product (Slater determinant) of the first N spin orbitals of 

the one electron problem (26): 

iThis function actually applies to spinless particles, or can be 
interpreted as the space part only for particles of integer spins. 
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\h (D^CDéz (1)^(1) "4/2 (1)^/29(1) 

4l (2)diP(2)d2 (2)d2P(2)"^/2 (2)4^/2^(2) 

ra.s.p. = i/iri? 

ix (N)flf1p(N)^2 (N) 2̂P(N)- n̂/2 (N) N̂/2p(N) 

(1-1-2) 

The exclusion principle, acting through the required antisymmetry 

of the wave function, correlates the motions of electrons of like spin so 

that there is zero probability of finding any two of them at the same 

point in space. The main effects of these so-called Fermi holes result 

in electrons being "pushed" into higher states when the lower states are 

already occupied by electrons of like spin. The energy corresponding to 

s p is, as with the simple product, the sum of the one-electron 

orbital energies. 

If we now considered the mutual coulombic interactions of the 

electrons to be "turned on", but keep the wave function fixed, we obtain 

(27) a somewhat more realistic energy value:* 

E = 2 Z<«5i(l)|h(l)|«{i(l)> + Z<8^(l)|l/r12|4(2)> 
i i 

+ 22 Z<4(1)| Vr19|4(2» " 2 Z<(^. (1)^,(1) | l/r]2|^(2)^5.(2)> 
ij^i 1Z J i j^i 1 J J 

where 
h(l) = -l/2Vi - Z Zk/rkl 

k 

(1-1-3) 

(1-1-4) 

^This addition to the energy is, of course, the first order perturba­
tion energy when the electronic coulombic interactions are the 
perturbation. 
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with being the nuclear charge of nucleus k. 

This is not the true energy of the system because we have not allowed 

the wave function to readjust to the interelectronic repulsions. This 

adjustment would involve the formation of a "coulombic correlation hole" 

around each of the electrons, wherever it may be found in space. This is 

a region in which the probabilities of finding the other electrons are 

depressed as compared to those for the noninteracting model. 

As indicated above, because we have used an antisymmetrized product 

(not a simple product) wave function, electrons already have Fermi 

correlation holes around them with respect to electrons of like spin. 

In this case the coulombic correlation holes are not needed so badly. 

Thus the antisymmetrized product wave function has a somewhat lower 

energy than its corresponding simple product wave function. This energy 

lowering is formally due to the so-called exchange integrals, which are 

brought into the energy expression in going from to the cor­

responding Ya s (27). These constitute the last sum on the right of 

Eq. 1-1-3. 

This is still not the most refined form of the independent particle 

model, since one can keep the form of Y^a.s.p. by allowing the orbitals 
to change due to the average interactions of the electrons. Thus, 

orbitals may be chosen which are solutions of one-electron Schrodinger-

i 
like equations which include an extra potential due to the average fields 

of the remaining electrons. This approach reaches its zenith in the 

Hartree-Fock (self-consistent-fieId) method in which the best possible 

orbitals are found. This is, of course, still not the true wave function, 



www.manaraa.com

5 

but it is as far as the independent particle model can be extended.^ 

The energy expression remains that of Eq. 1-1-3. 

As with the previous case, in order to go on to the correct wave 

function we must allow the wave function to readjust to the "instantane­

ous" coulombic interactions of the electrons, bringing in the 

correlation holes. The magnitudes of these holes have now been somewhat 

lessened, but their energy effects (collectively called the correlation 

energy) are still very significant. The correlation energies for most 

molecules exceed their binding energies. Thus when correlation effects 

are quite different in the molecule from what they are in the separated 

atoms or ions (the Ng molecule for example), one does not get good esti­

mates of the binding energies by taking the difference between the SCF 

energy of the molecule and those of the atoms. The alkali halides are 

not of this type, so that reasonably good estimates of their ionic 

binding energies can usually be obtained. 

At the present time SCF wave functions have been found for about 

half the atoms, and a few small molecules. These are usually found using 

the LCAO-MO (linear combination of atomic orbitals-molecular orbitals) 

SCF approach (22). The "minimal basis set" SCF wave functions which are 

dealt with in this thesis represent reasonable approximations to the true 

^The extension of the model to "different orbitals for different 
spins", sometimes called the unrestricted Hartree-Fock method, involves 
departure from a pure spin state, i.e., the resulting function is not an 
eigenfunction of the total spin operator. One can use the "extended 
Hartree-Fock method" and project out the pure spin state (take the 
component which is a pure spin state), but it is a linear combination of 
determinants, and so is quite different from the usual independent 
particle model. 
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ones (see for example Figure 10). For atoms, minimal basis set SCF wave 

functions use only as many analytic (usually Slater type) orbitals as 

there are SCF orbitals. In molecules a minimal basis set commonly 

includes only as many analytic orbitals as is necessary to describe the 

separated atoms in the minimal basis set approximation. 

In the following section, we will briefly discuss some of the major 

methods which have been proposed to go beyond the independent particle 

model. 

B. Methods for Improving on the Independent Particle Model 

The correlation hole has a cusp (discontinuous derivative) at the 

position of the electron it surrounds, and furthermore changes shape 

somewhat depending on the electron's position in space. These facts, 

among others, make it difficult to introduce into the wave function. 

The most widely used technique for overcoming the correlation dif­

ficulty has been the configuration interaction method. Here one attempts 

to build the wave function from a linear combination of Slater determi­

nants which differ from each other in the inclusion of at least one 

different orbital. This method is analogous to a Fourier expansion, and 

is based on the theorem that if the orbitals constitute a complete set 

in the one-electron space, then these determinants are a complete set in 

the antisymmetric N-electron space. If one uses suitable orbitals, he 

can obtain about 80-90 percent of the correlation energy with fairly 

short expansions. Since the orbitals do not have singularities in their 

derivatives except at their own nuclear centers, the cusps of the 
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correlation holes must be built up by very long expansions. Thus the 

last few percent of the correlation energy are very hard to come by with 

this method. 

Another major method of attack has been to introduce the interelec-

tronic distances explicitly into the wave function. This acts to build 

the correlation hole directly, and the cusp is put in easily. Except 

for two electron systems, this has led to extremely difficult integrals 

involving three or more interelectronic distances in the same integral. 

This method is very successful on some two electron systems, but its 

application to larger systems is just beginning. 

A third approach of relatively recent origin is that of the pair 

function theories. They attempt to break up the N electron problem into 

a combination of comparatively simple two electron ones. This approach, 

used in combination with either of the two previous ones for solving the 

two electron problems, appears to hold the greatest promise at present. 

Pair theories have arisen from the recognition that two electron 

"collisions" (two electrons coming within the range of each other's cor­

relation holes) are much more probable than three, four, etc., electron 

collisions. This is particularly true because, for any three electrons, 

two must have the same spin and therefore tend to be kept apart by their 

Fermi holes. 

Of the various pair theories, separated pair theory (11) (see also 

Reference 2 and earlier references given there) appears to hold the most 

promise. In this scheme the wave function is an antisymmetrized product 

of N/2 pair functions, each pair function replacing a doubly occupied 
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molecular space orbital of the conventional SCF theory. This allows the 

greatest correlation effects, viz., those between a pair of electrons in 

the same space orbital, to be accounted for. The small interorbital 

correlation effects, neglected by this approach, can hopefully best be 

taken into account later on. 

C. Survey of Main Topics of Thesis 

1. Chemical binding in HgO and H^ 

In Secs. II and III of this thesis, we consider what can be learned 

about molecule formation from the independent particle model, e.g., from 

SCF wave functions. It was pointed out above that correlation errors in 

molecules are usually larger than their binding energies. Thus unless 

there is considerable cancellation between the separated atoms and the 

molecule, with respect to their correlation errors, good binding energies 

are not obtained. However, in most molecules about 50-70 percent of the 

binding energies are given by SCF calculations applied to both the 

separated atoms and the molecule. It is of course important that we 

understand where this part of the binding comes from, as well as the 

effects on binding due to correlation. Also the effects on binding due 

to correlation must generally await accurate wave functions, whereas the 

one-electron (independent particle model) effects can be studied now. 

As indicated by the above percentages, the one-electron effects are 

generally the most important, and it is becoming increasingly evident 

that the correlation effects are not as complex conceptually. 

In Sec. II we examine the chemical binding in HgO according to an 
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analysis developed by Ruedenberg (24). It is shown that the commonly 

held belief that the binding comes about because of the build up of 

electronic charge in the bond region is almost surely false. The bonding 

is in fact much more complex and might best be interpreted as a complex 

interplay between interference effects (reflecting the wave character of 

the electron), and the usual electrostatic potentials. The analysis 

treats the binding energy in terms of these concepts. 

In Sec. Ill the same analysis, which was applied to HgO in Sec. II, 

is applied to Hg. The major conclusions found to apply to HgO are found 

to apply to lïg- Although this analysis probably does not represent the 

final word in this complex picture, it nevertheless brings out many 

subtle effects which must be understood in order to really comprehend 

what makes up the chemical bond in the independent particle model. In 

Sec. Ill we also consider various ways of interpreting the concept of 

"charge shifted into the bond region" and the energy effects associated 

with this phenomenon. 

2. Optimally localized orbitals 

Orthogonal Hartree-Fock orbitals ̂ (1) are solutions of coupled 

equations of the type (27) 

F(l)^(l) = Z A J.(l) , 
j J J 

(1-3-1) 

where 

- Z /i (2) l/r12($.(2) dr2 
j J J 

(1-3-2) 
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Any closed shell Slater determinant wave function is invariant with 

respect to a unitary (orthogonal, if the orbitals are real functions) 

transformation among the space orbitals.*- The usual (canonical) Hartree-

Fock orbitals are unique in that they correspond to a diagonal represen­

tation of the Hartree-Fock operator F(l), i.e., the X^j's of Eq. 1-3-1 

are zero if i^j. Thus for these orbitals we have equations of the type 

F(l)<$i(l) = 6.(1) rf.(l) (1-3-3) 

This results in 6^ being interpretable as the negative of the ionization 

potential for ionization from the corresponding orbital 4^. Therefore, 

6^ corresponds to those terms which would be missing from Eq. 1-1-3 if ̂  

suddenly became unoccupied. For ionization potentials, and similarly 

spectral transitions, the canonical orbitals are particularly suitable. 

For discussing and computing some other properties, a different set of 

SCF orbitals is often much more useful. 

Sec. IV of this thesis discusses a method for finding that set of 

SCF orbitals which are localized so as to have the least total electronic 

interactions between them. For these orbitals the sum of the last two 

terms on the right of Eq. 1-1-3 is a minimum. Further, each of the two 

terms is separately a minimum. The first term represents the coulombic 

interactions between the orbital charge densities, and the second the 

exchange interactions. Since the physical meaning (in particular the 

1Actually this applies to any linear transformation of the orbitals 
which leaves them linearly independent. We confine ourselves to 
orthogonal transformations, resulting in orthogonal orbitals, because the 
simple energy expression of Eq. 1-1-3 holds for such orbitals. 
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total electronic interaction energy) of the wave function is not changed 

in going to this new orbital set, these orbitals have the maxiaum total 

"internal" electronic interactions (second sum on the right of Eq. 

1-1-3). 

Because of these properties, the localized orbitals should exhibit 

very nearly minimum interorbital correlation effects, and therefore are 

best suited to be replaced by separated pair functions. They also have 

two other interesting properties. When the proper molecular or atomic 

symmetry exists, they usually turn out to be equivalent orbitals (7, 

13), e.g., in s^p^p^ state of the oxygen atom, the 2s, 2px and 2py 

canonical SCF orbitals hybridize to become three equivalent sp2 trigonal 

hybrids. Perhaps partially due to the preceding property, for molecular 

ground states the localized orbitals usually end up to be either lone 

pair orbitals, bond orbitals, or fairly isolated inner shell orbitals. 

Because of their maximum overall localization from each other, 

these orbitals can be expected to show the greatest achievable independ­

ence of each other, i.e., any one of them should be least influenced by 

changes in another, on the whole. Changes of this type occur when one 

proceeds from member to member of an isoelectronic series of molecules. 

Thus the series Ne, HF, HgO, NH3, and CIfy can be visualized as created 

by successively "pulling" protons, from the central nucleus, out along 

the axes of the tetrahedral sp3 hybrid localized orbitals of Ne. The 

proton should cause a large perturbation on the orbital along whose axis 

it is placed, but little effect on the other hybrids. Further, any 

change in this orbital will induce minimal changes in the other orbitals. 
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Thus one might hope to be able to estimate the localized orbitals for a 

given system from those of other members of the series, and a rough 

consideration of the perturbational effects. More importantly, by far, 

one might hope to similarly estimate changes in pair functions in going 

from molecule to molecule. 

It should be pointed out that these ideas have been discussed since 

the early days of quantum mechanics, and were particularly revived by 

the discussions of equivalent orbitals (7, 13, 14, and 15). However 

these ideas have not been given quantitative application up to now 

because of the lack of a method for determining energy-localized 

orbitals, without the help of symmetry. Symmetry is not enough to 

determine the localized orbitals uniquely for any atomic or molecular 

system. 
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II. CHEMICAL BINDING IN THE WATER MOLECULE 

A. Introduction 

1. Method 

The development and application, in recent years, of techniques for 

computing more accurate molecular electronic wave functions, has created 

the need for methods of interpreting such wave functions. Procedures 

capable of attributing quantitative meaning to concepts frequently used 

to describe chemical binding in a qualitative fashion would be desirable. 

Among these are such terms as hybrid orbitals, promotion, valence states, 

ionic and covalent binding contributions, electron sharing, and 

resonance. Recently, Ruedenberg has suggested such an analysis which can 

be applied to wave functions given as expansions in atomic orbitals (24). 

This analysis partitions the electron density and the electronic 

pair density of the molecule into components corresponding to promoted 

atomic states, to quasiclassical coulombic interactions of these promoted 

states, and to interactions resulting from the sharing of electrons 

between atoms. If the molecule contains atoms of different electronega­

tivities, resulting in a net transfer of electronic charge, components 

reflecting this effect are also found. From the various density parts, 

corresponding energy effects are derived. They lead to a decomposition 

of the molecular binding energy which is conceptually interpretable. 

An application of this analysis to the H^ molecule has been given 

in Reference 24, and discussions for are contained in the following 

section and Reference 25. Here the analysis is applied to the water 
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molecule, in an effort to test it on a more complex system. 

Considering the limitations imposed by the approximate character of 

the wave function analyzed, it is felt that the present investigation 

makes progress toward understanding the underlying physical basis of 

chemical binding in HgO. It is possible to quantitatively define unique 

hybrid atomic orbitals, atomic coulombic interactions, and promoted 

valence states of atoms, all of which correspond surprisingly closely 

to the intuitive "pictures" of chemists. Furthermore, in contrast to 

several somewhat mysterious quantities used in the past to describe 

covalent binding, e.g., the "exchange energy" of valence bond theory, 

the energy contributions to covalent binding are shown to correspond to 

effects (mainly due to electron sharing) which are not at all mysterious. 

The conclusions arrived at in connection with the HgO molecule 

substantiate the views on chemical binding which were reached in the 

cases of the Hg and Hg molecules. These hold that the shift of charge 

into the bond region, which accompanies binding, leads to a strong drop 

in kinetic energy, but little or no decrease in potential energy. Also 

it is maintained that even stronger energy effects occur in the regions 

close to the nuclei, which, however, are opposite in sign to those aris­

ing from the shift of charge into the region between the nuclei. 

2. Molecule 

The water molecule was selected not only because it is a molecule of 

great importance, but also because it is among the simplest of the 

general polyatomic molecules, i.e., while it contains relatively few 

electrons and has considerable symmetry, it contains atoms of different 
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electronegativities, more than one bond, and is nonlinear. 

The analysis is applied to the LCAO-MO (linear combination of atomic 

orbitals-molecular orbital) SCF (self-consistent field) wave function 

(22) of the HgO molecule obtained by Ellison and Shu11 (9). It is 

recognized that this wave function suffers from the approximate character 

of the SCF method, and also from the use of a very limited set of AO's 

for the expansion of the MO's. Furthermore, a number of the three center 

integrals involved were approximated, and the energy was not minimized 

with respect to the effective nuclear charges for the AO's, so that the 

virial theorem is not obeyed. Nevertheless, it was decided to carry out 

a detailed test of the analysis for this wave function, since it was the 

best at the time the analysis was carried out. 

The atomic orbitals used as a basis for the molecular orbitals are 

the Slater Is, orthogonalized 2s, 2px, 2py, and 2pz orbitals on the oxygen 

atom, and the Is orbitals of each of the two hydrogen atoms. The 2 px 

orbital is perpendicular to the plane of the molecule, and the 2pz orbital 

is directed midway between the two hydrogen atoms. For our purposes, 

these orbitals are not the most suitable. The partitioning of the elec­

tron densities exhibits its greatest clarity in terms of certain hybrid 

atomic orbitals, to be described in Sec. II-C. These "valence atomic 

orbitals" are selected such that they have maximum or minimum valence 

activities. 

The following discussion proceeds in two major parts. The first 

part combines a general description of the approach with a discussion of 

the gross results for H20, which illustrate the various concepts. The 
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second part combines a more detailed characterization of the various 

density components with the orbital by orbital breakdown of the gross 

effects. 

B. Partitioning According to Physical Concepts 

1. Basic considerations 

As mentioned in the introduction the basis of the analysis is a 

partitioning of both the molecular electronic density, p, and the elec­

tronic pair density, ir, into several components. These components are 

interpreted as corresponding to various conceptual steps required in 

changing the wave functions describing the component atoms in their ground 

states into the molecular wave function. Since the molecular energy is 

completely determined by p and ir (p gives the kinetic and nuclear attrac­

tion energies of the electrons, and v the interelectronic repulsion 

energies), the energy effects associated with each of our conceptual steps 

can be calculated from the density and pair density components, and in 

this way a breakdown of the molecular binding energy is also obtained. 

The binding energy associated with the present approximate wave function 

is taken as the difference of the total molecular energy and the energies 

of the atoms in their ground states, as calculated using the same intra-

atomic integrals as in the molecular energy calculation. It is found to 

''"These steps do not correspond to physically measurable processes, 
but are purely conceptual in nature. 
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be 7.87 ev.^ 

The interpretation of the partitioning makes use of two basic 

physical pictures. One picture is that of bringing the atoms from 

infinite separation into their equilibrium positions. The other picture 

is that of the electrons changing their motions from being associated 

with particular atoms to being shared between several atoms, i.e., in 

the molecule the various electrons attain substantial probabilities of 

being found on atoms other than the ones they were originally on. They 

can be said to have their probability charge clouds "spread" over 

several atoms. 

For the actual physical system both these effects are of course 

intimately connected: the solutions of the Schrodinger equation describe 

more and more electron sharing the closer the atoms are situated with 

respect to each other. Nevertheless, it is possible to construct hypo­

thetical electron densities and pair densities which do exhibit sharing 

at very large distances, and others which include no sharing even at 

small distances. Such a conceptual separation of positional approach and 

electron sharing appears to be a useful interpretative tool for analyzing 

the difference between atomic and molecular electronic arrangements. 

In accordance with the preceding remarks, the series of steps which 

describe the transition from the separated atoms to the molecule are 

•'•After the work herein reported was completed, it was pointed out by 
R. McWeeny and K. A. Ohno (Proc. Roy. Soc. 255: 367. 1960) that, due to 
an error in the normalization factor of the Slater 2s orbital of the 
oxygen atom, the binding energy should have been found to be 5.7 ev 
instead of 7.7 ev. Due to the correction of some, but not all, of the 
errors involved, a binding energy of 7.87 ev was obtained in the present 
analysis. 



www.manaraa.com

18 

classified according to the following scheme. 

a. Non-sharing modifications These are modifications of p and 

TT which bring them as close as possible to their molecular values, with­

out the sharing of electrons between the atoms. 

Effects at infinite separation: These are what we shall call 

promotional effects. 

Effects due to moving the atoms from infinite separation to their 

actual separations in the molecule: These will be called quasiclassical 

electrostatic interactions. 

b. Sharing modifications These are the modifications in p and 

7T due to electron sharing. 

Effects at infinite separation: Here there are no effects on p, but 

there are effects on ir, which we shall call sharing penetration effects. 

Effects due to moving the atoms to their actual molecular positions: 

This leads to effects on both p and ir, which we shall refer to as 

interference (overlap) effects. 

The following sections explain the individual parts of this scheme 

in terms of the concepts just mentioned. At the same time, the actual 

magnitudes of the energy contributions will be illustrated by discussing 

the gross quantitative results found for HgO. These are collected in 

Figure 1. A more detailed discussion of the individual entries will be 

pursued in Sec. II-C. It should be understood that the arguments given 

are not meant to justify any of the mathematical formulations. Rather, 

they represent interpretations which are found to be useful and 
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Figure 1. Binding energy partitioning for the H^O molecule. The rows for the 0 atom 
and H atom, the OH and HHl bonds, represent the totals from Figures 4 and 
5 respectively. 
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reasonable for the understanding of the mathematical breakdown to be 

described subsequently. 

2. Pre-sharing modifications 

a. Promotion To begin with, we can hypothetically think of the 

atoms as being in their ground states at infinite internuclear separa­

tions. At this stage the molecular electronic density is given by 

PG = 2 PG(A) (II-l-l) 
A 

Q 
where p (A) is the electron density of atom A in its ground state. The 

molecular pair density at this stage is given by 

TTG = 3TG(A) + S* 17e (A,B) (II-1-2) 
A A,B 

where tt (A) is the ground state pair density of atom A, and tt (A,B) is 

the pair density arising from electron pairs with one partner on atom A i 

and the other on atom B. Since the electrons composing the charge 

distributions (pG(A)'s) of the different atoms are different, the 

G 
7T (A,B)'s are simple products of the form 

7fG(A,B) = pG(A)pG(B) . (II-1-3) 

Each atom is now considered to be promoted to a certain "promoted 

state" which can, in form at least, be represented as a superposition of 

the ground and excited states of the isolated atom. Each atom in being 

promoted suffers a change in its electron density and pair density, so 

that the molecular electron density now becomes 
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pP = S pP(A) (II-1-4) 
À 

where pP(A) is the promotion state density of atom A. The pair density 

of the molecule becomes 

7TP = 2 /(A) + Z1 TT^(A,B) (II-1-5) 
A A,B 

where TT^(A) is the promotion state pair density of atom A, and TTP(A,B) is 

the pair density arising from electron pairs with one partner on the 

promoted atom A, and the other on the promoted atom B. By the same 

reasoning as for Eq. II-1-3 

irP(A,B) = pP(A)pP(B) (II-1-6) 

b. Promotion effects in HgO The promotion effects for HgO are 

given in the first two columns of Figure 1. Unfortunately, the wave 

function does not allow for variation of the effective nuclear charges of 

the atomic orbitals which it involves, so that contraction (or clustering) 

type promotion is not allowed for. The second column (PRC) therefore 

contains no entries. 

Hybridization promotion (first column, (PRH)) raises the energy of 

the oxygen atom 7.95 ev. This is due to a "distortion" of the atom in 

such a way that its valence shell electron density can be represented as 

a simple superposition of the electron densities of two lone pair 

orbitals and two bonding orbitals. The two lone pair orbitals are 

directed away from the hydrogen atoms, and the two bonding orbitals 

generally toward them. The largest contribution to the oxygen promotion 
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energy is seen to be due to an increase in electronic repulsion energy 

(4.49 ev), due to the fact that in the promotion state the electrons are 

forced together somewhat more than in the ground state. Promotion raises 

the kinetic energy of the oxygen atom by 2.53 ev, and the nuclear attrac­

tion energy by .94 ev. All these effects will be examined in detail in 

Sec. II-C-6. We will see that they are considerably different from what 

would be expected, due to the fact that the wave function tries to 

compensate for the unallowed contraction promotion by excessive mixing 

in of the Is orbital with its very strong energies. 
I 

In the present wave function, even hybridization promotion is not 

allowed for the hydrogen atoms, since these are described in the wave 

function by a single fixed Is orbital. 

The construction of hybrid orbitals for the oxygen atom will be 

described in detail in Sec. II-C-1. 

c. Quasiclassical interactions of the promoted atoms If the 

atoms are moved to their actual positions in the molecule, without being 

modified by the resulting interaction, they will interact with one another 

quasiclassically, i.e., their.electronic and nuclear charge distributions 

interact in a purely coulombic fashion. This is analogous to the inter­

actions of fixed charge distributions in classical electrostatics. If 

atoms were actually composed of fixed classical-like charge distributions, 

these quasiclassical interactions would constitute the extent of bond 

formation in molecules. 

In the past, similar types of interaction have frequently been re­

ferred to as "coulombic" as opposed to "exchange" interactions. We 
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prefer the name "quasiclassical", since all electronic interactions must 

in fact be considered as coulombic in nature. 

The quasiclassical interactions are of three types. There are the 

nuclear repulsions, computed by considering the nuclei as point charges. 

The attractions of the nuclei for the electrons on other atoms are ob­

tained by considering the electrons of an atom A to be represented by the 

charge distribution pP(A), as defined in connection with Eq. II-1-4. The 

interactions of the electrons of different atoms are given by the classi­

cal electrostatic interactions of the atomic charge distributions pP(A), 

P 
and are represented by the ir (A,B)'s of Eq. II-1-6. 

d. Quasiclassical interactions in HgO The energies for these 

interactions are given in the third column (QCN) of Figure 1. 

In completely analogous fashion it is possible to compute the quasi-

classical interactions of the atoms in their ground states at the 

1 
molecular nuclear configuration. Their sum is found to be -6.60 ev. 

This is larger than the interactions between the promoted atoms, i.e., 

-4.57 ev, because promotion of the oxygen atom results in a general shift 

of its electronic charge away from the hydrogen atoms, due to the forma­

tion of the lone pairs. This decreases the repulsion between the atomic 

*Two neutral atoms with spherically symmetric electronic charge dis­
tributions always interact quas iclas s ica1ly with an attractive effect up 
to very close separations: the repulsion of the electronic clouds is weak 
enough that, even combined with the repulsion of the two nuclei (the 
strongest interaction), the attractions of the nuclei for the electrons 
of other atoms predominate. The oxygen atom in its ground state does not 
have a spherically symmetric electronic charge cloud, but for the orienta­
tion which we have chosen (one electron in each of the 2py and 2pz 
orbitals, and two in the 2px orbital), the attractive effect for a 
spherical distribution is only slightly lessened. 
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charge clouds less than the attraction of the hydrogen nuclei for the 

oxygen electrons. The attractive interaction (-.22 ev) between the 

hydrogen atoms remains unchanged, since they suffer no promotional change. 

3. Sharing modifications 

a. Interference effects on the density If the atoms are at 

infinite separations, it is possible to pass from a wave function 

describing no sharing of electrons to one describing shared electrons, 

p 
without changing the first order density p . This is so because the 

contributions to the first order density arising from different electrons 

are indistinguishable. 

However, if the atoms are in their actual molecular positions, 

sharing of electrons is accompanied by a redistribution of the electron 

P 
density p , because of non-vanishing overlap between orbitals of differ­

ent atoms. This redistribution will be called the "interference" effect. 

It is well known that the electron density of a molecule is not even 

roughly approximated by a superposition of the electron densities of the 

separated atoms. However, a wave function made by superposing atomic 

wave functions yields a bona fide approximation to the actual electron 

density, especially if the component atomic wave functions can be modified 

(promoted) by polarization and scaling (minimization of the molecular 

energy with respect to the effective nuclear charges of the orbitals 

involved). Thus the molecular electron density is given much more closely 

by the square of a sum of atomic wave functions, rather than by a sum of 

squared atomic wave functions. Because of this, it will differ from the 

promotion state density pP, if the atomic wave functions overlap each 
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other. 

One can interpret this as an "interference" between the promoted 

atomic wave functions, similar to that observed with classical waves. 

Interference acts to redistribute the electron density of the 

promoted atoms by either increasing the electron density between the atoms 

at the expense of the densities on the atoms (constructive interference) 

or by increasing the electron densities on the atoms at the expense of the 

regions between the atoms (destructive interference). 

Among the various concepts used in the past in connection with 

chemical binding, the idea of "resonance" comes nearest to what we define 

here as interference. For, in the original sense, resonance as well as 

interference both describe the enhancement or attenuation of resultant 

wave amplitudes generated by the superposition of component wave ampli­

tudes. This typical wave phenomenon leads to the chemical effects of 

bonding and antibonding resultant states. No close relationship exists 

however between our approach and the valence bond theory, where 

"resonance" is used to describe interactions of any type of "structure 

wave functions". Our method of defining interference energies is based 

specifically on the interaction of atomic orbitals only, and hence is 

quite different from that used for obtaining valence bond resonance 

energies. It is superior in that it can be applied with rigor to any 

molecular wave function. 

The redistribution of electron density which results from interatomic 

interference in the case of nonvanishing overlap, can be described by a 

density term p1 which is added to the promotion state density pP. This 



www.manaraa.com

27 

change due to interference will be denoted by 

P1 = 2 PI(A,B) (II-1-7) 
A,B 

where p*(A,B) is the interference density arising from electron sharing 

between atoms A and B. 

As mentioned earlier, constructive interference acts to shift 

electronic charge into the bond region from the atoms. Therefore the ad­

ditive term p*(AB) has in general a region of negative charge in the bond 

and regions of positive charge on the atoms; the total charge of the 

negative region being equal in magnitude to the sum of those for the 

positive regions. For an antibonding destructive interference, usually 

the opposite situation exists for p*(AB). 

Constructive interference is typical of covalent binding situations, 

and leads to a strong lowering of the energy of the system. In the fol­

lowing section dealing with it is pointed out that this energy 

lowering has a physical interpretation quite different from that generally 

conjectured by previous writers. It is essentially due to a strong 

decrease in kinetic energy, the effects on the potential energy being 

relatively weak. The effect on the kinetic energy occurs because of a 

strong decrease in the gradient of the wave function, especially on the 

atoms, as a result of the shift of charge from the atoms into the bond 

1 
region. 

*It is well known that the kinetic energy corresponding to a given 
wave function is proportional to the square of the gradient of the 
function, summed over all configuration space. 
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The results for HgO, which are to be discussed a little further on, 

confirm again the detailed discussion given in the preceding sections, 

and show that the accumulation of charge in the bond, due to interference, 

does not lower the potential energy appreciably. 

b. Penetration effect on the pair density There is an important 

difference between the density and the pair density of a hypothetical 

wave function which exhibits electron sharing between atoms whose overlap 

can be neglected. This is due to the fact that, while it is possible to 

p 
construct a promotion state density p which remains unaffected by elec­

tron sharing in this situation, this is impossible for any promotion 

state pair density ir^. 

In fact it is not difficult to see that the interelectronic interac­

tions will be substantially affected by the sharing. Thus before 

electrons are shared, the entire electronic charge cloud of one atom 

repels the entire, electronic charge cloud of another atom, since the two 

clouds contain different sets of electrons. After electron sharing, a 

substantial part of the interaction between the charge clouds of differ­

ent atoms disappears, due to the fact that parts of both atomic charge 

clouds are now due to the same electrons. There is of course no interac­

tion of a single electron with itself. Thus, sharing gives rise to a 

decrease in interatomic electronic repulsion energy. 

Inside the atoms an opposite effect occurs. Here, before electron 

sharing occurs, the actual electronic repulsion energy is much less than 

that which would correspond to the classical self-interaction of the 

p 
density p (A). This is due to the fact that many of the different parts 
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of the charge cloud pP(A) are due to the same electron, and hence are 

noninteracting. After sharing, although the total atomic charge cloud 

PP(A) is not changed, more different electrons now make up this charge 

distribution. Hence, parts of the atomic charge cloud which previously 

originated from the same electron now originate from different electrons, 

so that the electronic repulsion on the atoms is increased. 

It is thus clear that sharing induces changes in the pair density 

even in the absence of overlap, because it leads to a greater penetration 

of the electrons from different atoms. These changes will be denoted as 

follows 

7TSP = 2 1TSP(A) + 2' TTSP(A,B) (II-1-8) 
A A,B 

op 
where ir (A) is the change in the pair density of atom A due to sharing 

penetration, and TT P̂(A,B) is the change in pair density between atoms A 

and B due to sharing penetration. 

These sharing penetration effects remain when the atoms are brought 

into their actual molecular positions, the only difference being that the 

interatomic electronic repulsion energies arising from TT*P(A,B) become 

considerably larger in magnitude. But even then, the increase in intra-

atomic electronic repulsions corresponding to the first term of Eq. II-1-8 

is larger than the decrease due to the second term. 

c. Penetration effects in H^O In the case of HgO, this effect 

is exhibited in the fifth column of Figure 1, labeled SPN. Since sharing 

penetration affects only the electronic interactions, these terms are 
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given in the row (OEI), i.e., other electronic interactions. The 

energies of the promoted atoms are raised 14.18 ev for the oxygen and 

4.71 ev for each of the hydrogens, due to sharing penetration. However 

the energy of each OH bond is lowered 8.75 ev. The very slight increase 

in energy of the HH1 bond is anomalous, in that this indicates a very 

slight decrease in sharing from a situation in which there is no sharing. 

Actually we would expect very little sharing penetration to take place 

between the hydrogen atoms, so that this small deviation from zero could 

easily be due to the lack of accuracy of the wave function, our method 

of analysis, or some other little understood effect. 

'd. Interference modifications of the pair density . When the 

atoms are brought together, the overlap between atomic orbitals introduces 

further modifications of the pair density. These are of the same charac­

ter as those found for the first order density, and therefore are 

considered to be due to interference. We denote these changes by 

(II-1-9) 

with 

7TIP = Z £j_ TTIP (BB | A) 
A B,B 

(II-1-10) 

and 

IT11 = Z[ Z>n(AA|BB) . 
A,A B,B 

(II-l-ll) 

Here, irII> can be thought of as the change in the pair density for which 
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one partner of the electron pair is associated with p*} and the other 

with pP. therefore has components of the form (BB|A) where one 

T — p TT 

partner is associated with p (B,B) and the other with p (A), TT repre­

sents the change in the pair density, where both partners of the electron 

pair are associated with p*. It therefore has components of the form 

TT^(AA|BB), where one partner of the electronic pair can be thought of as 

—— T — 

being associated with pI(AA) and the other with p (BB). 

The energy effects associated with + 77"** are combined with the 

kinetic and nuclear attraction energy effects of p* to give the total 

interference energy effects for the interaction of the neutral promoted 

atoms. Furthermore, the energies associated with ir*"P are combined with 

the nuclear attraction energies from p* to give "shielded nuclear 

attraction" (SNA) terms which represent, in one type of term, the inter­

action between the interference density and the promoted atoms. The 

energies arising from TT** are referred to as "other electronic interac­

tions" (OEI) and the kinetic energy terms (KIN) constitute a third type 

of term. 

e. Interference effects in H2O In Figure 1 all interference 

energy contributions arising from p* and ir* are divided into intra-bond 

contributions (listed in the seventh column (SIN)), and inter-bond 

contributions (ninth column (SIN)). 

The intra-bond contributions arise from the p*(A,B)'s of Eq. II-1-7, 

and also from the TT*"P(BB|A)'s and 77"**(AA| BB) 's of Eqs. II-1-10 and 

II-1-11 where A=B and A=B. 

The contributions for the OH bonds are seen to be large and negative 
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(-10.79 ev for each bond), and in fact constitute the main contributions 

to the total binding energy, in agreement with the general reasoning 

given previously. 

As discussed at that point, this energy lowering is entirely due to 

the kinetic energy. Its contribution (KIN) is -13.14 ev. It arises from 

the kinetic energy of p*(0H), and corresponds to a strong reduction in 

the average gradient of the wave function due to interference. This is 

to be expected, since the shift of charge into the bond region from the 

atoms strongly decreases the large gradient on the atoms and also some­

what the gradient in the bond region (24). 

The shielded nuclear attraction (SNA) terms correspond to the inter­

action of pI(OH) with the promoted atoms 0 and H. They arise from the 

attractions of the nuclei for p*(OH) plus the electronic repulsion 

energies coming from 7T^(0H|0) and Tr*P(0H|H) respectively. In the inter­

actions of a charge distribution such as p*(0H) with the promoted atoms, 

the interaction with the nucleus usually predominates over that with the 

diffuse electronic charge cloud of the atom (provided the center of 

gravity of the latter is not very, much closer to the charge distribution 

than is the nucleus). This is so in all cases occurring here, so that 

the promoted neutral atoms always attract electronic charge. 

A further essential fact is that these shielded attractions for 

p*(0H) consist of two opposing contributions, owing to p*(0H) having 

regions of both negative and positive charge. As mentioned earlier, any 

constructive interference density is of positive charge on the atoms and 

of negative charge in the bond. For the OH bond in particular, these 
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regions are not located symmetrically with respect to the atoms, but 

instead the central negative-charge region is displaced strongly toward 

the H nucleus. The reason for this is that the oxygen atom interacts 

appreciably only with its valence orbitals which are in the outer regions 

of the atom, whereas the hydrogen atom is intimately involved as a whole 

in the interference and bonding situation. This asymmetry of p*(OH) 

leads to characteristic differences in its interactions with the 0 and 

H atoms. 

The interaction of p*(OH) with the shielded 0 atom (6.45 ev) is 

positive, due to the predominance of the repulsion of the 0 atom for 

that positive region of p*(OH) which lies on it, over its attraction for 

the negative region which lies much further away. The repulsion of the 

0 atom for the other positive region on the H atom would be still smaller, 

and can usually be disregarded in qualitative reasoning. 

The interaction term for p*(OH) with the shielded H atom (-3.56 ev) 

is negative, due to the greater attraction of the H atom for the central 

negative-charge region of p*(OH) which lies very close to it, as opposed 

to its repulsion for that positive-charge region of p*(OH) which lies on 

it. This predominance occurs because the negative region has approximate­

ly twice the total charge of either of the two positive regions, since 

its charge is equal in magnitude to the combined charges of both positive 

regions. 

The electronic interaction energy arising from ir**(OH[OH), (OEI), 

is -.54 ev. We will see in Sec. II-C-4 that this energy is mainly due to 

interactions which arise from oxygen orbitals which are of lone-pair or 
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inner-shell type, and in addition overlap appreciably with the hydrogen 

Is orbitals. These electronic interactions are similar to those which 

lower the triplet state below the singlet state in multiplet theory, 

giving rise to Hund's rule. 

The energy of the HH* bond is raised 3.27 ev due to interference 

between the hydrogen atoms, mainly because of an increase of 3.88 ev in 

the kinetic energy. This indicates a destructive antibonding interfer­

ence between the atoms, in which charge is taken from the bond region and 

forced onto the atoms, thereby increasing even more the already large 

gradient of the wave function on the atoms, and also the gradient between 

the atoms. 

The interaction of the hydrogen atoms with p*(HH') i.e., the 

shielded nuclear attraction (SNA), is attractive (-.76 ev for each atom) 

as would be expected, since p*(HH') has its regions of negative charge on 

the atoms. 

The interaction arising from ir^^HH1|HH') appears to be very slightly 

repulsive (.01 ev), but this figure is almost certainly subject to 

revision when a better wave function is found. 

The inter-bond contributions are of two types. The first involves 

the interaction of a promoted atom A with an interference density p(B,B) 

between the two other atoms, and arises from the Tr%P(B,B|A)'s of Eq. 

II-1-10, where A is neither B nor B, and the attraction of the nucleus 

of A for p*(B,B). The interactions of the OH bonds with the H atoms 

opposite them are quite large and positive (1.07 ev). This is to be 

expected, since the positive region of p*(0,H) lies closest to the H' 
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atom (as pointed out above, the negative region of p*(0,H) lies almost 

on the H atom, which is considerably further from the H1 atom than is 

the 0 atom). On the other hand, the interaction of the 0 atom with the 

HH1 bond is .16 ev. This represents the predominance of the repulsion 

of the 0 atom for the positive region of p*(H,H') compared to its attrac­

tion for the negative regions on the H atoms. This occurs because of the 

closer proximity to the 0 atom of the center of the HH1 bond than the H 

atoms. 

The second type of inter-bond contributions are those representing 

the interactions of the interference densities of different bonds, and 

arise from the ir**(A,A|B,B)'s of Eq. II-l-ll where A^B and A^B. In HgO 

these interactions are gratifyingly small, the largest being that between 

the two OH bonds (.16 ev). That this interaction is positive is reason­

able, since the positive regions of p*(0,H) and p*(0,H') are both on or 

near the 0 atom. The slight positive interaction between p*(H,H') and 

p*(0,H) (.10 ev) must be due to the slight predominance of the repulsion 

of the negative region of p*(H,H') for that of p*(0,H) combined with the 

repulsion of the positive regions (which also are close) , over the attrac­

tions of the negative regions of p*(H,H') for the positive regions of the 

p*(0,H)'s on the H atoms. 

It is pleasing that all the inter-bond contributions are not very 

large (the largest being only about 10 percent of the total binding 

energy), since this not only confirms the empirically observed approximate 

additivity of bond energies, but also allows one to make estimates of the 

possible errors in such additive schemes. 
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4. Charge transfer effects 

Any effects associated with a gross electronic charge transfer from 

atom to atom within the molecule have been ignored so far. Such effects 

undoubtedly exist and are important in polar molecules. In HgO there is 

a gross "shift" of electronic charge (.3515 electrons—see the ninth 

column of Figure 2) toward the oxygen atom and away from the hydrogen 

atoms, due to the greater electronegativity of the oxygen atom. These 

effects will be referred to as charge transfer effects. 

a. Changes in the density Charge transfer gives rise to a 

P 
change in the electron density p which is given by: 

pT = Z£T(A) (II-1-12) 
A 

where p^(A) is the change in the electron density of the promoted atom A 

due to charge either being transferred to it, or away from it. It should 

be noted that we have here considered charge transfer to cause only a 

modification of pP and not p*, i.e., we consider p? and p* to be 

independent modifications of p . This simplifying assumption is con­

sidered to be justifiable since pT and p1 represent redistributions of 

different character: whereas p is associated with covalent binding, p 

is related to ionic binding. It is an empirical fact that additive-

decompositions of binding energies into covalent and ionic contributions 
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are markedly successful.^ 

b. Changes in the interatomic pair density terms Since charge 

transfer results in a modification of PP(A) to give pP(A) + pT(A), the 

pair density for the quasiclassical interaction between the promoted 

states of atoms A and B [%^(A,B), which depends upon the pP(A)'s 

according to Eq. II-1-6J will be modified by the obvious change 

TTQCT(A,B) = [pP(A) + pT(A)][pP(B) + pT(B)] - pP(A)pP(B) 

= PT(A)PP(B) + pT(A)pP(B) + pT(A)pT(B) . (II-1-13) 

But charge transfer also gives rise to a change in the sharing 

situation between the atoms. This must be so since only a fraction of 

an electronic charge is transferred, which can only be accomplished by a 

partial shift of the shared electrons. Consequently, the sharing pene­

tration interaction between the two atoms A and B will be changed, i.e., 

op SPT 
7f (A,B) will be modified by the addition of a transfer term 7r (A,B). 

Finally, the pair density contributions to the total interference 

energy will also be affected. In analogy to the term 7T*P of Eq. 

II-1-10, there will be changes in the pair, density of the form 

TTIT = L Z'TrIT(A|BB) . (II-1-14) 

^This discussion, in which for the purposes of the analysis, p* and 
pT are effectively defined to be mutually independent, is typical of a 
number of assumptions which are unavoidable in order to proceed. The 
real test of all definitions of this analysis is their ability to cor­
relate and predict the properties of similar molecules. 
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Here, (A|BB) can be thought of as the pair density contribution arising 

from electron pairs in which one partner of the pair is associated with 

T T •* 
p (A) and the other with p^(BB). These changes correspond to changes in 

the interactions between the interference densities and the promoted 

atoms, due to the changes in the shielding electron densities of the 

promoted atoms as a consequence of charge transfer. 

c. Interatomic quasiclassical effects The total change in inter­

atomic quasiclassical effects between atoms A and B, caused by charge 

transfer, involves the attraction of the nucleus of B for p^(A), and vice 

versa, plus the electronic interactions arising from the T?QCT(A,B) of Eq. 

II-1-13. These interactions can be regrouped into two types of contribu­

tions. The first is the interaction of P^(A) with the promoted atom B on 

the other end of the bond, or vice versa, and is referred to as a 

"shielded nuclear attraction" term (SNA). It involves the attraction of 

the nucleus of B for p^(A), plus the electronic interaction from the 

first term of the right side of Eq. II-1-13. The second type of contribu­

tion is called the "other electronic interactions" (OEI), and involves 

the electronic interactions arising from the third term of the right side 

of Eq. II-1-13. 

d. Interatomic quasiclassical effects in HgO The interaction 

of the promoted 0 atom with p^(H) is seen from Figure 1 to be 1.20 ev, 

which is to be expected since the 0 atom is repulsive to a positive 

charge distribution (due to the greater repulsion of the 0 nucleus than 

the attraction of its diffuse electronic cloud). The interaction of the 
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H atom with p^(0) is seen to be -.81 ev, again as would be expected since 

PT(0) is a negative charge distribution. The interaction of pT(H) with 

PT(0) (OEI) is attractive (-.84 ev) as would be expected. The interac­

tions in the HH' bond are seen to follow well in terms of the above 

reasoning for the OH bond. 

e. Interatomic sharing penetration effects in H^O it is seen 

from Figure 1 that the change in sharing penetration due to charge 

transfer increases the energy of each OH bond 1.97 ev, which can be 

understood in terms of the following. When electrons are "shifted" 

toward the oxygen atom it is most advantageous, energy wise, that these 

electrons be predominantly those which are already mainly associated with 

that atom, i.e., what we refer to as the "oxygen electrons". This is 

due to the fact that while the kinetic and nuclear attraction energies 

are indifferent to which electrons are "shifted", the electronic repulsion 

energy on the oxygen atom is not increased nearly so strongly if the 

shifted electrons are the ones which are already mainly present on that 

atom. Since, as was pointed out earlier, the electronic repulsions on 

the atoms are considerably stronger than those between atoms, the result 

of charge transfer is that the oxygen atom mainly withdraws its own 

electrons. Thus there is a decrease in the sharing of electrons by the 

oxygen atom with the hydrogens, and an associated partial elimination of 

the strong decrease in energy of the OH bond which occurred upon neutral 

sharing by the promoted atoms. 

An examination of the intra-atomic sharing penetration changes will 

reveal that the hydrogen atoms have little or no tendency to withdraw 
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their electrons, which would be expected since the general shift of 

charge is toward the oxygen atom. 

There is also a slight indicated decrease in sharing penetration 

between the two H atoms (.11 ev), which is open to question because of 

the antisharing effect observed in the neutral sharing situation. 

f. Charge transfer effects on interference in H2O The effects 

of charge transfer on interference, which arise from the of Eq. 

II-1-14, in the case of HgO are given in the eighth and tenth columns 

of Figure 1. 

For a bonding situation such as in the OH bonds, interference shifts 

charge from the atoms into the bond. This leaves a net positive region 

on each of the atoms, and a net negative region between them. If we 

imagined momentarily that our atoms were of about equal size, so that the 

negative region of the interference density would lie about equally be­

tween them, we would expect a charge on one of the atoms to interact 

somewhat more strongly with the positive region on the same atom than 

with the negative region in the center. However in the OH bond the 

negative region lies close to the H atom, so that the above situation is 

reversed to give a .40 ev energy lowering for the interaction of p^(H) 

with p*(0,H). The interaction of p?(0) with p*(0H) is negative as 

expected (-.12 ev), but is not as large as would probably be expected 

on the basis of the close proximity of the positive region of p*(0H) and 

PT(0). 

The interaction of p*(HH') with both p^(H) and p^(H') gives slight 

negative contributions (-.02 ev), as would be expected in view of the 
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fact that the negative regions of p*(HH1) lie on the H atoms. 

There is one type of inter-bond interaction involving charge trans­

fer and interference. This is the interaction of the p^(A) of an atom A 

X ™™ 
with an interference density p (BB) between two other atoms. The inter-

T T 
action of p (H) with p (OH1) (.10 ev) is repulsive due to the closer 

T T 
proximity of p (H1) to the positive region of p1(0H) which lies on the 0 

atom, than to its negative region which lies near the H atom. The closer 

proximity of the H atoms to the 0 atom, than to each other, has already 

T T 
been pointed out. The interaction of p (0) with p (HH1) (-.24 ev) is 

attractive, again as would be expected, since the positive region of 

pI(HHl) lies closest to p^(0). 

g. Intra-atomic effects on the pair density The intra-atomic 

changes in the pair density, due to transfer, can be treated in a way 

completely analogous to that used for the interatomic changes: namely, by 

dividing them into quasiclassical and penetration parts. 

The quasiclassical part will have the pair density 

7rQGT(A) = [PP(A) + pT(A)]2 - [PP(A)]2 

= 2pP(A)pT(A) + pT(A)pT(A) . (II-1-15) 

It represents the difference between the quasiclassical interaction of 

pP(A) + p^(A) with itself, and that of pP(A) with itself. 

That charge transfer also changes the intra-atomic sharing penetra­

tion (given by the pair density term in Eq. II-1-8) is a necessary 

consequence of the change in the general sharing situation associated 
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with charge transfer. For, just as interatomic sharing penetration 

between the promoted atoms originally gave rise to changes in the intra-

atomic as well as the interatomic pair densities, the change in sharing 

penetration, due to transfer, also gives rise to intra-atomic changes in 

SP 
the pair density. As with ir , these changes are not associated with a 

change in the electron density p, and so are not included in the quasi-

classical changes of Eq. II-1-14. For an atom A, these changes will be 

SPT 
denoted by ir (A) . 

h. Intra-atomic quasiclassical effects The total intra-atomic 

quasiclassical effects of charge transfer involve the electronic inter­

action energies arising from Eq. II-1-15, and the nuclear attraction 

terms for the p^(A)'s. As with the interatomic terms, the electronic 

interaction and nuclear attraction contributions are combined into 

"shielded nuclear attraction" terms (SNA), and "other electronic inter­

actions" terms (OEI). The shielded nuclear attraction terms represent 

the attractions of the neutral promoted atoms for the charges transferred 

to them. Thus the term for an atom A includes the attraction of its 

nucleus for p (A), plus the electronic interactions of the first term of 

the right side of Eq. II-1-15. The "other electronic interactions" 

represent the quasiclassical self-interaction of the charge transferred to 

an atom with itself. They arise from the second term of the right side 

of Eq. II-1-15, and are in general small. 

There is also a kinetic energy term arising from p (A). It is con­

venient to group these kinetic energy contributions together with the 

quasiclassical terms just mentioned (although they are of course not 
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quasiclassical) for the following reason. The shielded nuclear attrac­

tion term represents the potential energy of the additional transferred 

T p 
charge p (A) in the field of the nucleus of A as shielded by p (A). 

Hence, in the case where p^(A) represents a negative charge distribution, 

the shielded nuclear attraction energy plus the kinetic energy of p (A) 

is a quantity similar in character to the electron affinity of atom A. 

This is seen by comparison with the one-electron mode1^ for the latter. 

One might therefore expect that the total contribution from these 

terms would be close to q (A) times the electronic affinity of atom A, 

where q^(A) is the total electronic charge in p^(A). The similarity is 

T P 
limited, however, in that p (A) and p (A) do not represent the optimal 

distributions for the free negative ion, and this alters the quantita­

tive results. 

T In the case that p (A) represents a positive charge distribution, 

such as with p^(H), the resulting terms are best considered as analogous 

to the electronic affinity of the atom for a "positive electronic 

charge". 

In conclusion then, it is seen that the intra-atomic quasiclassical 

and kinetic energy terms represent those contributions in the analysis 

which are most similar to the familiar concept of electronegativity. 

T P However, the severe restrictions imposed upon p (A) and p (A) by 

*The one-electron model for electron affinities considers the nega­
tive ion as consisting of the additional electron moving in the field 
generated by a neutral core. For best results, the additional electronic 
distribution should be determined by the variation principle, and the 
distribution of the shielding electrons might need semi-empirical 

adjustment. 
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their specific definitions (to be discussed in Sec. II-C-3), along with 

the restricted form and limitations of the original wave function, result 

in the energies obtained in the case of HgO being quite different from 

the electron affinities of the 0 and H atoms. Presumably, if an 

accurate wave function were available, and if our definitions of p (A) 

and pP(A) were the best possible, the resulting energies would correspond 

quite closely to the electron affinities of the atoms involved. 

i. Intra-atomic effects in HgO We see from Figure 1 that the 

energy of the 0 atom is raised 5.03 ev due to the kinetic energy and 

quasiclassical effects. The energy of each of the hydrogen atoms is 

lowered .34 ev by the same effects. 

The effects on both types of atoms are seen to be due essentially 

to a predominance of the kinetic energy of p^(A), over the shielded 

nuclear attraction of the atom for it (p^-(A) is seen to have a relatively 

small quasiclassical interaction with itself). This result can be under­

stood by noting that electron affinities are relatively small compared to 

the kinetic or potential energy of the additional electron, as given by 

the one-electron model. Thus the kinetic and potential energies of the 

additional electron are about equal in absolute magnitude, and, except 

for the small electron affinity residue, cancel each other.^ It is 

•'•This is not in contradiction to the virial theorem, since in the 
one-electron model the shielded potential for the additional electron is 
not homogeneous of degree (-1), i.e., due to the fact that it moves 
through the charge clouds of the other electrons, the field which it 
experiences is not that of a point charge. For a rigorous many-electron 
calculation of the electron affinity, the virial theorem must of course 
hold. 
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therefore not difficult to see that our restricted choices of pP(A) and 

p1(A) might increase the one-electron energy of p*(A) so that it actually 

becomes positive, i.e., the kinetic energy of p-"-(A) comes to predominate 

over its potential energy. This situation exists in both the 0 and H 

atom cases, but the signs of the energies in the case of the H atom must 

T 1 be reversed since p (H) represents a "positive electronic charge". 

Figure 1 indicates a decrease in sharing penetration energy of 8.40 

ev for the 0 atom due to charge transfer. This clearly shows that the 

oxygen withdraws its own electrons in preference to those of the hydrogen 

atoms, which is in complete agreement with the diminished sharing of 

electrons between the 0 and H atoms indicated by the increase in inter­

atomic penetration energy observed earlier. 

The H atoms suffer a very slight rise in energy (.12 ev) due to the 

change in sharing penetration, indicating that they are not effective in 

withdrawing their electrons from the sharing situation, as was the 0 

atom. This is probably to be expected, since the general movement of 

charge is toward the 0 atom. 

The net result of charge transfer is therefore a lowering in energy 

of 3.37 ev for the 0 atom, and a lowering in energy of .22 for each of 

the H atoms. The effect for the 0 atom is probably to be expected, due 

to its large electronegativity (assuming this has not changed too 

*The case of adding charge to the Is orbital of a simple H atom 
illustrates clearly these effects, since the additional electronic charge, 
in being shielded by the original electron, cannot experience a lowering 
of potential energy corresponding to that of the original electron. 
However in being forced into a Is orbital, it gains a corresponding 
amount of kinetic energy. 
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drastically in going to the promoted state), but the effects for the H 

atoms have been reversed from that of free atoms, no doubt due to the 

above discussed effect of shielding on the potential energy. 

5. Summary 

Elsewhere (24) it has been shown that the density and energy 

contributions discussed in the foregoing, if properly defined, exhaust 

the modifications required in changing the electronic distributions of 

the atoms to that of the molecule. 

From a formal point of view, this implies that the following addi­

tive decompositions exist for the total molecular density p and the 

total molecular pair density ir. For the density: 

P T T p = p + p + p 

= PG + p?-G + PI + PI CII-L-16) 

where pG, pp, p* and p^ are defined in Eqs. II-l-l, II-1-4, II-1-7 and 

II-1-12, and 

pP"G = pP - pG (II-1-17) 

is the density modification due to promotion. Similarly for the pair 

density: 

rr . / + + ̂ QCT + ̂ FI + ̂ ip + TII + ̂ 1 

= 7TG + 7fP"G + TT5̂  + + 7TSPT + 77"IP + 7+ TT11 (II-1-18) 

where ttG, tt^, 7r P̂, , 7r*P, 7r"'T and tt** are defined in Eqs. II-1-2, 
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II-1-5, II-1-8, II-1-13, II-1-15, II-1-10, II-1-14, and II-l-ll, and 

TfP'G = 7TP - 7TG (II-1-19) 

is the pair density modification due to promotion. 

From a conceptual point of view, the conclusions of the preceding 

sections can be synthesized to give the following over-all picture of the 

major aspects of chemical binding in H^O. 

In the ground state the valence electrons of the oxygen atom doubly 

occupy the 2s and the 2px orbitals, and singly occupy the 2py and 2pz 

orbitals. Hybridization promotion results in the formation of two 2s-2pz 

valence hybrid orbitals, of which the lone pair orbital is doubly 

occupied and the bonding orbital contains somewhat more than one electron 

(1.221 electrons). Correspondingly, the 2py orbital contains less than 

one electron (.772 electrons).'*' This distortion has only small effects 

on the kinetic and nuclear attraction energies, but causes a relatively 

large increase in the electronic repulsion energy, due to the slightly 

greater "squeezing together" of the electrons, particularly in the bond­

ing orbital. 

The quasiclassical interactions between the promoted atoms are all 

attractive, although the 0-H interactions are not quite so strong as 

^In Sec. II-C-1 the formation of these valence hybrids will be 
discussed. Also, since the valence lone pair orbital has a population 
of almost exactly two electrons, it can be linearly combined with the 
2px orbital without introducing cross terms into the intra-atomic part 
of the density expansion. Thus can be formed two equivalent lone pair 
orbitals above and below the plane of the molecule, which represent the 
electron distribution of the lone pairs in a completely equivalent 
fashion to that of the former orbitals. 
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they would be between the atomic ground states, due to the general shift 

of electronic charge to the back of the oxygen atom upon its promotion. 

The sharing of electrons across the OH bonds greatly lowers the 

energy, due to the constructive interference which is thereby established. 

The sharing across the HHf bond increases the energy due to destructive 

interference. Both interference effects are mainly due to the kinetic 

energy contributions. 

However, sharing also raises the energy somewhat due to the increase 

in penetration between the valence electrons of the oxygen atom and those 

of the hydrogen atoms. Composing this rise in energy are energy increas­

ing intra-atomic contributions, which are only partially balanced by the 

energy lowering interatomic contributions. 

Finally, charge transfer from the H atoms to the 0 atom lowers the 

energy. The largest contribution to this arises from a decrease in the 

energy of the oxygen atom, although the hydrogen atoms also have their 

energies decreased somewhat by loosing electronic charge. This latter 

is due to the greatly changed character of the hydrogen atoms as a result 

of the electronic shielding established on them by electron sharing. 

The only interatomic quasiclassical transfer effects of appreciable 

consequence are the attractive interactions of the transferred charges 

across the OH bonds, which are often naively associated with the energy 

lowering of charge transfer. Since however the modification of the 

covalent bonds by charge transfer is largely accomplished by the oxygen 

atom's pulling back of a fraction of its shared electrons, there also 

results an increase in interatomic energy due to the decrease in pénétra-
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tion. This latter effect is considerably stronger than the interatomic 

quasiclassical effect, but considerably weaker than the effect on the 

oxygen atom. 

Finally, the remaining small interactions between interference and 

charge transfer have been seen to be understandable in terms of the 

spatial charge distributions characteristic for the two effects. 

C. Partitioning According to Atomic Orbitals 

In order to illustrate how an orbital partitioning of the various 

densities and energies becomes possible, we must refer to the specific 

definitions for the various partitionings of p and ir. Since they are 

treated in detail elsewhere, (24), we will describe them here only brief­

ly. While it is believed that the basic partitioning, as discussed in 

Sec. II-B, pinpoints the typical features of molecular wave functions 

which are essentially associated with chemical binding, it is realized 

that the particular definitions to be discussed in the following, and 

used in this analysis, are open to modification and improvement. 

As in the preceding section, we shall discuss the general principles 

and definitions as well as the specific results in the case of H^O. The 

latter are given in Figures 2, 3, 4, and 5, to which repeated reference 

will be made. 

1. The valence atomic orbitals of the oxygen atom in HgO 

An orbital breakdown of the gross energy effects and the electron 

densities discussed in the preceding section would seem to be particularly 

instructive if it were based on atomic hybrid orbitals which conform 
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naturally to the actual valence situation. In the following, the actual 

molecular electron density will be used to construct such a set of 

"valence atomic orbitals". 

The electron density resulting from a calculation based on certain 

atomic orbitals *X r has a unique expansion in terms of them, viz.,* 

P = 2 p(r,s) 7I . (II-2-1) 
r,s 

The coefficient p(r,s), which indicates the weight of the contribution of 
1 

the orbital product "X r "?{. s> is called a bond-order if r and are on 

different atoms. 

Integration of p over all space yields a completely analogous break­

down of the total electronic population, viz., 

N = 10 = Z p(r,s)S(r,s) (II-2-2) 
r,s 

where S(r,s) is the overlap integral between *Xr and T£s* Since the 

orbitals on the same atom are orthogonal, intra-atomic contributions 

exist only for r=s. If we assume, with Mulliken (19) and McWeeny (17), 

that the interatomic contribution p(r,s)S(r,s) "owes its existence" in 

equal measure to the two interacting orbitals andg, then one can 

say that a given orbital r is responsible for the fraction 

''"For a MO wave function, the density p is the sum of the electron 
densities of the doubly occupied MOs, viz., Z# % where is the n^h MO. 

n n 

Hence an equation of the form of Eq. II-2-1 results upon substitution of 
the LCAO-MOs. 
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q(r) = p(r) + v(r) (II-2-3) 

of the total population. Here the interatomic contribution 

v(r) = L p(r,s)S(r,s) (II-2-4) 
s 

will be referred to as the valence active fraction, whereas 

p(r) = p(r,r) (II-2-5) 

shall be called the valence inactive fraction of the orbital population 

q(r). This is done because the interatomic contributions are indicative 

of chemical interactions, with a positive v(r) corresponding to a binding 

interaction and a negative one being associated with an antibonding inter-

1 
action. The reasons for this will be discussed in the next section. 

It is possible to select, for a given atom, a set of unique 

orthogonal hybrid-atomic-orbitals which have the property that the first 

one has the largest possible valence inactive fractional population p(r), 

the second one has the next largest possible p(r), etc. In this way a 

separation into valence active and valence inactive orbitals is largely 

attained. Furthermore, these orbitals have the additional property that 

the intra-atomic coefficients p(r,s)(r^s) vanish, which causes them to be 

identical with certain hybrid orbitals proposed by McWeeny (18). 

^This association of the signs of the v(r)'s with binding or anti-
binding interactions has been recognized for some time, particularly by 
Mulliken, but the underlying reasons have never been clearly elucidated, 
being usually attributed incorrectly to the build-up or decrease in 
charge density in the so-called "low potential" region between the nuclei. 
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a. Valence hybrids in HgO In the case of H^O the formation of 

valence hybrid orbitals affects only the oxygen atom and, because the 

valence hybrid orbitals diagonalize parts of the density matrix, they 

preserve symmetry, so that only the Is, 2s, and 2pz orbitals mix to give 

an inner (Oi), lone pair (0jL), and bonding orbital (Ob). The expansions 

for these hybrid orbitals in terms of the Slater orbitals are given in 

Figure 2. The overlap integrals between these orbitals and the hydrogen 

Is orbitals are also given here. The p(^[^)'s, v('Xi),s, and q(7Ci)'s 

for the hybrid orbitals are given in Figure 2. 

Examination of the p(7( j.) 's> v(*X.i)'s» an(* q("X-i) 's for the valence 

hybrids indicates the lone pair and nonbonding character of the 2px 

orbital. The Ojt orbital is seen to have a population of almost two, and 

so is nearly a lone pair orbital. It is also seen to have some antibend­

ing character in that v(0j? ) is negative giving rise to a decrease in 

electron density in the bond regions where the contributions of the 

orbital products OJt Hh and 0^£ H'h1 are the greatest. As would be 

expected, the Oi orbital, which is essentially still the Is orbital, has 

very little valence active population, indicating its essentially 

nonbonding character. The 2py and Ob orbitals are seen to be strongly 

binding in character, in that they have fairly large positive valence 

active populations, giving rise to an accumulation of electronic density 

in the bond regions. 

b. ^Bonding hybrids in HgO It is possible to form from the 2py 

and Ob orbitals two orthonormal "bonding atomic orbitals", 
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Valence Expansion in Spherical Orbitals 

A.O., X k s z 

Overlap——• Bondorders and Populations — 

S(x,h) p v q qM qT p(X,h) 

1 .988077 -.144001 .054465 .00056 2.000 .000 2.000 2.000 .000 .000 

1 .149955 .820012 .552353 .29774 2.215 -.144 2.071 2.007 .064 -.242 

b .034878 .553935 .831829 .45228 1.046 .316 1.362 1.221 .141 .350 

y (unhybridized) .27601 .589 .329 .918 .772 .146 .596 

X (unhybridized) 0 2.000 0 2.000 2.000 0 0 

h' (unhybridized) .37459 .745 .079 .824 1.000 -.176 -.459 

Figure 2. Density partitioning for the valence AO's, in the H^O molecule 
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Figure 3. Exchange contributions to the pairpopulations for the molecule. 
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1 I b 
PR 2.000 .000 .000 

SPN .000 .000 .000 
SPT .000 .000 .000 
TOT 2.000 .000 .000 

PR .000 1.997 -.034 
SPN .000 .001 .014 
SPT .000 .170 .009 
TOT .000 2.168 -.011 

PR .000 -.034 .418 
SPN .000 .014 .268 
SPT .000 .009 .247 
TOT .000 -.011 .933 

PR .000 -.015 -.273 
SPN .000 .015 .273 
SPT .000 .000 .000 
TOT .000 .000 .000 

PR .000 .000 .000 
SPN .000 .000 .000 
SPT .000 .000 .000 
TOT .000 .000 .000 

PR .000 .030 .556 
SPN .000 -.015 -.278 
SPT .000 -.058 -.058 
TOT .000 -.043 .220 

PR .000 .030 .556 
SPN .000 -.015 -.278 
SPT .000 -.058 -.058 
TOT .000 -.043 .220 

y X h h • 

.000 .000 .000 ,000 

.000 .000 .000 ,000 

.000 .000 .000 000 

.000 .000 .000 ,,000 

.015 .000 .030 .,030 

.015 .000 -.015 -.015 

.000 .000 -.058 -.,058 

.000 .000 -.043 -,,043 

.273 .000 .556 .556 

.273 .000 -.278 -,278 

.000 .000 -.058 -,058 

.000 .000 .220 ,220 

.072 .000 .565 .565 

.278 .000 -.283 -.283 

.215 .000 -.034 -.034 

.421 .000 .248 .248 

.000 2.000 .000 .000 

.000 .000 .000 .000 

.000 .000 .000 .000 

.000 2.000 .000 .000 

.565 .000 -.110 -.041 

.283 .000 .555 .020 

.034 .000 -.014 -.012 

.248 .000 .431 -.033 

.565 .000 -.041 -.110 

.283 .000 .020 .555 

.034 .000 -.012 -.014 

.248 .000 -.033 ,431 
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(ObH) = l/V7(Ob+2py) and (ObH*) = 1/ /T (Ob-2py), (II-2-6) 

which are unique in that they are "mirror images" of each other in the xz 

symmetry plane of the molecule. These are found to point generally 

toward the hydrogen atoms, with an angle of 100.5° between their maxima. 

ObH and ObH1 do not however represent the corresponding valence inactive 

electron density of the oxygen atom as a simple sum of their individual 

contributions, as did the 2py and Ob orbitals. 

2. Interference I 

a. Interference partitioning of the density Of the three parts of 

p m T 

p, both p and p are intra-atomic in nature. Only p contains inter­

atomic character, and thus the inter-atomic terms of p, as given in Eq. 

II-2-1, must belong to p\ Since however p* represents a density 

modification, and hence is characterized by a vanishing population, it 

cannot be identical with the interatomic terms of p, whose population 

usually does vanish. It must also contain certain intra-atomic terms, 

p' say, which, together with the interatomic terms, yield a vanishing 

population. This corresponds to the fact that interference shifts 

charge from the atoms into the bond or vice-versa. By virtue of Eq. 

II-2-1, it is also clear that subtraction of the same intra-atomic terms 

p1 from the intra-atomic terms of p will yield the atomic densities 

P T ^ p + p , whose population thus becomes equal to the total molecular popu­

lation. 

Among the various possible intra-atomic contributions p1 to p* 

which would serve the purpose, those are chosen which, besides being 
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physically reasonable, also have the virtue of simplicity. 

It is assumed that the total interference interaction between two 

atoms is the sum of the interactions between all the atomic orbital 

pairs, where one orbital of the pair is on one of the atoms and the other 

on the other atom. It is also assumed that the interference interaction 

between two atomic orbitals Aa'*' and Bb is independent of any other 

orbitals which might be present, and depends only on the orbitals them-

selves and their relative positions with respect to each other. 

Finally, it is assumed that, in all cases, the two orbitals must be 

considered to enter equivalently into the interaction, even though they 

may not be of the same type, i.e., the two orbitals must be treated in 

the same way in the mathematical formalism. 

The first part of the above assumption necessarily results in p* 

being given as a sum of orbital-pair contributions p*(AaBb). The 

second part of the assumption causes the intra-atomic contributions to 

p*(AaBb) to have distributions in space which are proportional to the 

density distributions of the two respective orbitals, i.e., proportional 

to Aa% and Bb^ respectively. The final part of the assumption forces 

the populations of the two intra-atomic contributions to p^(AaBb) to be 

i 

equal. 

Combining the interatomic density terms with the intra-atomic terms 

thus obtained, we see that p* is given by: 

*Here "A" denotes the atom and "a" designates one of its orbitals 
such as Is, 2px, etc. or a hybrid orbital such as [.6(2s) + ,8(2pz)]. 

^This is seen to be equivalent to treating the bond-orders merely as 
weighting factors, with the "nature" of the interference being deter­
mined by the properties of the orbitals involved. 
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p — 2 p (ÂâBb) — 2 p(AaBb) <cAaBb£> (II-2-7) 
Aa,Bb Aa,Bb 

where the "orbital interference density" <AaBb> is defined by 

<AaBb> = AaBb - S (AaBb) [Aa2+Bb2] . (II-2-8) 

It is seen that the definition of pP + p-*- which is concomitant with this 

T definition of p will be: 

pp + pT = £ L q(Aa)Aa2 

A a 
(II-2-9) 

where the q(Aa)'s are just the "orbital populations" defined previously 

in Eq. II-2-3. 

A closer look at the definition of Eq. II-2-8 shows that the inter­

ference term p(HhOa)<HhOé> represents either a shift of charge from the 

atoms into the bond region, or from the bond onto the atoms, depending on 

the signs of the orbitals and of p(HhOa). Which of the two possibilities 

actually occurs for a particular Oa is indicated by the sign of its 

valence active population v(Oa) (see Eq. II-2-4). If v(Oa) is positive, 

a shift of charge from the Oa orbital into the overlap region is 

indicated; if it is negative, a removal of charge from the region occurs. 

In the present case the S(HhOa)1 s are all positive, as seen from Figure 2, 

so that the sign of v(Oa) is the same as that of the corresponding 

p(HhOa) which are given in the same table. Thus in the present case, a 

positive p(HhOa) is associated with a positive v(Oa) and therefore with a 

constructive interference interaction, with a destructive interference 
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being associated with a negative p(HhOa). 

It should be understood that the actual charge shifted is not 

identical with v(Oa), but is of course given by the integration of 

p*(HhOa) over the regions where it is positive (which is equal to the 

integral over the negative regions, with opposite sign). This latter is 

more closely approximated by v(Oa)[1 - S(HhOa)], but, since S(HhOa) is 

always smaller in absolute magnitude than unity, the v(Oa)'s always indi­

cate the direction of the charge shift by their signs. 

Fairly large positive bondorders are found for the HhOy and HhOb 

orbital pairs, since the Oy and Ob orbitals are directed generally toward 

the hydrogen atoms, and therefore interact strongly with them. The some­

what larger bondorder for the Oy case presumably reflects the fact that 

the lobes of this orbital lie somewhat closer to the hydrogen atoms than 

does the main lobe of the Ob orbital. The value of p(HhO^) is weak and 

negative, indicating that the OX orbital, in lying toward the back of 

the oxygen atom, and thereby having a lone pair character, has a smaller 

but antibonding interaction with the hydrogen atoms. 

b. Kinetic interference energies in HgO In Sec. II-B it was 

pointed out that a shift of charge into the bond region is associated 

with a negative kinetic interference energy, which must be considered a 

primary cause of covalent binding. A shift of charge out of the bond 

leads to a positive kinetic interference energy, which results in anti-

bonding effects. 

These conclusions are further illustrated by the kinetic interfer­

ence energies arising from the p*(AaBb)'s for the individual orbital 



www.manaraa.com

pairs. These kinetic energies are given in the seventh column of Figure 

5. In the preceding section it was pointed out that a positive bond 

order p(HhOa) is associated with a positive v(Oa) or v(Oa)[1 - S(HhOa)], 

and therefore with a shift of charge into the bond: the reverse holds for 

a negative p(HhOa). A positive p(HhOa) is therefore associated with 

negative interference kinetic energy, and a negative p(HhOa) with a 

positive one. 

In the cases of the HhOb and HhOy orbital pairs, these energies are 

very strongly negative, due to the fact that the corresponding interfer­

ence densities are of the constructive, bonding type. The kinetic energy 

of p*(HhOJÉ ) is strongly positive, since the interference is of the 

destructive, anti-bonding type. The fact that this latter energy is only 

about half as strong as the two former ones is to be expected since the 

Hh and Ojt orbitals overlap considerably less than do the orbitals in the 

other cases, so that the resulting interference density p*(HhOj( ) is 

correspondingly less. The HhCK orbital pair gives essentially no 

interference density, and therefore no interference kinetic energy con­

tribution, since the overlapping of these orbitals is very small. The 

HhOx orbital pair gives no interference kinetic energy, not because of 

little overlap and therefore little interference, but because the 2px 

orbital has vanishing bond orders with all the other orbitals because of 

its unique symmetry. Even if it had a nonvanishing bond order with the 

Hh orbital, the kinetic and potential energies of p^(HhOx) would vanish 

because the antibonding destructive interference on one side of the plane 

would be exactly canceled, energy wise, by the bonding interference on 



www.manaraa.com

61 

the other side. 

It should be noted that the kinetic energy contributions determine 

the character of the total interference energy, since the potential 

energy contributions are always considerably smaller. Furthermore, in 

HgO they are seen to cancel one another partially. These latter terms 

will be discussed in detail in Sec. II-C-4. 

3. Quasiclassical interactions 

a. Transfer and promotion state densities in HgO Since we have 

defined p* in such a way that pp + p^ is given as a simple sum of orbital 

contributions, according to Eq. II-2-9, it seems to be desirable that we 

also define p^, and therefore pp, to be of this form. Thus: 

pT = 2 Z qT)Aa)Aa2 (II-2-10) 
A a 

pP = Z Z qP(Aa)Aa2 . (II-2-11) 
A a 

Not only does this greatly aid the interpretation of the results obtained, 

but it also simplifies the reasoning involved in obtaining a specific 

T 
definition of p . Eqs. II-2-9, II-2-10 and II-2-11 imply the decomposi­

tion 

q(Aa) = qP(Aa) + qT(Aa) (II-2-12) 

for the orbital populations q(Aa). 

From the sum of the orbital populations we know the total population 

of each atom, and therefore in sample cases such as HgO we know how 

much total charge is transferred from atom to atom, assuming no transfer 
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of charge between like atoms in identical situations, such as the two H 

atoms. Also since the two H atoms each have only one orbital, P^(H) for 

those atoms is already uniquely determined. 

In order to ascertain what p (0) is, we must decide how much of the 

electronic charge which is transferred to the oxygen atom, viz. q (0) = 

.35154 electrons, is given to each oxygen orbital, i.e. the q^(0a)'s of 

Figure 2. Since in the promoted and neutral sharing situation the oxygen 

atom is promoted and furthermore sharing electrons with the hydrogen 

atoms, we have no a priori knowledge of what the populations of these 

orbitals would be without charge transfer, i.e., the qP(0a)1 s of Figure 2. 

However, since the more valence active orbitals are more involved in 

electron sharing, we would expect them to receive proportionally more of 

the transferred charge. Therefore, since the absolute values of the 

valence active populations (v(Oa)'s of Eq. II-2-4) for the various 

orbitals provide at least a rough measure of their valence activities, 

we consider it reasonable to set 

qT(0a) = K|v(0a)| = |v(0a)| qT(0)/Z| v(0a)( . (II-2-13) 

It is seen that the proportionality constant K is chosen such that 

Z qT(0a) = qT(0) . (II-2-14) 
a 

The results of the above method are given in Figure 2. This method 

gives about equal transferred charge to both the Ob and 2py orbitals, and 

about half this amount to the Oj. orbital. The Oi and 2px orbitals 

receive essentially no transferred charge. 
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It should be noted that qP(0Jl_ ) is almost exactly two, indicating 

that in its promoted state the oxygen atom has two lone pair orbitals 0JL 

and 2px. Furthermore, the sum of qP(Ob) and qP(Oy) becomes almost 

exactly two, so that the two equivalent bonding orbitals ObH and ObH1 of 

Eq. II-2-6 each become singly occupied, in the promoted state. 

P IT 
Having defined p and p in terms of orbital contributions, we can 

now examine (1) the quasiclassical interactions of the promoted atoms in 

terms of contributions from orbital pairs, (2) the changes in these 

interactions due to charge transfer, and (3) the intra-atomic quasiclassi­

cal effects of charge transfer in terms of orbital contributions. 

b. Quasiclassical interactions of the promoted atoms in HgO The 

quasiclassical interaction of the promoted oxygen atom with one of the 

hydrogen atoms is broken down according to orbital pairs in the first 

column of Figure 5. As pointed out in Section II-B, there are three 

types of interactions involved in these terms, i.e., nuclear-nuclear 

repulsion, electronic repulsions between the atoms, and the attractions 

of the nuclei for electrons on the other atoms. In order to obtain a 

reasonable partitioning by orbital pairs, it seems best to consider the 

interactions of neutral fragments of the total atomic charge density, 

i.e., fragments consisting of an orbital and a fraction of the nucleus 

having a charge equal in magnitude, but opposite in sign, to the orbital 

population. In this way the very large magnitudes of the interactions 

largely cancel one another, and we have situations analogous to the total 

interactions of the neutral promoted atoms. Thus, in H^O, the nuclear 

charge of the oxygen atom is divided among the oxygen orbitals according 
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to the orbital populations (qP) given in Figure 2. and each of the 

resulting fractional nuclear charges is associated with the corresponding 

orbital to give a neutral "orbital atom-fragment" for calculating the 

three types of interaction energies. 

Two neutral spherically symmetric orbital fragments from different 

atoms, whose electronic charges overlap, always interact with an attrac­

tive effect, up to very close separations. If the overlap is small, this 

interaction will be very small. This explains the very small attractive 

effect for the orbital pair HhOi, since the Oi orbital is almost entirely 

of Is character, and therefore overlaps the hydrogen Is orbital very 

little. 

Those oxygen orbitals which are not spherically symmetric about the 

oxygen atom in general have their charge densities shifted either closer 

to or further away from the hydrogen atom, as compared with a spherically 

symmetric distribution. In order to understand the interaction energies 

from these orbital fragments and the hydrogen atom, we must consider the 

changes in the three contributing types of interactions when this situa­

tion exists instead of the spherically symmetric charge density. For a 

given interaction distance, the nuclear-nuclear repulsion is the strong­

est type of interaction, the nuclear-electronic attraction the next 

strongest type of interaction, and the electronic-electronic repulsion 

the weakest type interaction. Since all these interactions rise 

monotonically from zero at large interaction distances (up to very close 

separations), the changes of the three types of interactions occurring 

with changing interaction distance have the same relative ordering of 
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magnitudes as the effects themselves, i.e., the electronic-electronic 

interaction changes most slowly with interaction distance, the electronic-

nuclear interaction changes more rapidly and the nuclear-nuclear repulsion 

changes most rapidly. 

Now the interaction energy of the H atom with an orbital fragment 

on the oxygen will differ from that of a comparable spherically symmetric 

distribution in the contributions arising from the interaction of the 

oxygen electrons with the hydrogen electrons and the hydrogen nucleus. 

In view of the preceding discussion, it is the latter, i.e., the attrac­

tion between the oxygen electrons and the hydrogen nucleus, which 

predominates, so that the total difference follows this effect. 

In the case of the HhOyt interaction, where the charge density of 

the OX orbital lies toward the back of the oxygen atom, the slight 

attractive effect which would exist for a spherically symmetric orbital, 

such as a 2s orbital, is seen to have been converted to a fairly strong 

repulsive effect, due to the predominance of the decrease in the afore­

mentioned attraction. 

The small repulsive effect for the HhOx interaction arises also 

because the charge cloud of the 2px orbital is not as close, on the 

average, to the H atom as in the case of a spherically symmetric orbital. 

The effect is not nearly so large, however, as in the HhO/ case, since 

the two lobes of the 2px orbital are not so strongly directed away from 

the H atom as is the principal lobe of the OjC orbital. 

The strong attractive effects for the HhOb and HhOy interactions 

occur for analogous reasons because the Ob and Oy orbitals are generally 
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directed toward the hydrogen atom. That the HhOb interaction is about 

twice as strong as that for HhOy reflects the fact that the Oy orbital 

has only one of its two identical lobes close to the hydrogen atom H, 

whereas the Ob orbital is effectively concentrated in the single lobe 

which lies near the hydrogen. 

c. Changes in the interatomic quasiclassical interactions due to 

charge transfer in HgO The changes in the interatomic quasiclassical 

interactions, due to charge transfer, are given in the second column of 

Figure 5. 

The SNA terms on the right side of the column represent the shielded 

nuclear attractions of the hydrogen atom for the electronic charges 

transferred to the oxygen atom, i.e., the q^(0a)0a2's (see Eq. II-2-8 

and Figure 1). These terms are all negative since, as mentioned in Sec. 

II-B, the hydrogen atom has a net quasiclassical attraction for electronic 

charge. The only large terms are for the bonding orbitals, since in 

these cases the q^(0a)0a2ls are much closer to the hydrogen atom, and 

also the q^(0a)'s are larger. 

The SNA terms on the left side of the column represent the shielded 

nuclear attractions of the neutral "orbital atom-fragments", of the 

oxygen atom, for the positive resultant charge on the hydrogen atom, i.e., 

q^(H)Hh2. The "orbital-fragment" of a spherically symmetric orbital on 

the oxygen atom would slightly repel q^(H)Hh2, since it would have a 

slight net attraction for electronic charge. Thus the HhOi interaction 

is very slightly repulsive. The 0/ atomic-fragment has a strong 

T 0 
repulsion for q (H)Hh , since the nuclear charge fraction is much closer 
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to the hydrogen atom than the electronic charge cloud of the 0Z 

orbital. Conversely for the Ob orbital-fragment there exists a small 

attraction for q-*-(H)Hh2; it is not nearly as large as the repulsion of 

the OJl atomic-fragment, since in this case the interacting electronic 

charge distributions overlap considerably, weakening their attractive 

interaction. In the case of Oy, we see a slight repulsion, no doubt due 

to the fact that only one lobe of the Oy orbital acts to shield the 

corresponding fractional nuclear charge. 

The OEI terms in the center of the column represent the quasiclassi-

T 9 cal interactions of the q (Oa)Oa^'s, i.e., the electronic charges 

transferred to the oxygen orbitals, with qT(H)Hh2, i.e., the charge 

density of the positive "hole" left on the hydrogen atom. These are, of 

course, all attractive, with the greatest attractions coming when the 

corresponding charge distributions are closest, such as with the bonding 

orbitals. 

d. Intra-atomic quasiclassical effects of charge transfer in HgO 

The changes in the intra-atomic quasiclassical interaction, due to charge 

transfer, are given in the second column of Figure 4, according to 

orbitals. 

In Sec. II-B it was observed that it is reasonable to include the 

kinetic energies of the p (Aa)'s along with these intra-atomic quasiclas­

sical energies, since the totals which then result can be interpreted as 

being close in principle to the electronegatives of the atoms. 

The kinetic energies (KIE) of the electronic charges transferred to 

the oxygen atom are all seen to be positive, as they must be. The 
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Figure 4. Intra-atomic energy contributions for E^O 
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Figure 4 (Continued) 
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Figure 5. Interatomic energy contributions for HgO 
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largest ones are seen to be for the orbitals which receive the most 

transferred charge, since there are only very minor differences between 

the kinetic energies of the various orbitals (except for the Oi orbital, 

which receives no transferred charge). 

The shielded nuclear attractions (SNA) are seen to be of about the 

same magnitude as the kinetic energies, but opposite in sign. The 

reasons that the shielded nuclear attractions are of about the same 

magnitude, but somewhat less than the kinetic energy terms, were discussed 

in Sec. II-B-4. 

The quasiclassical interactions between the various charges trans­

ferred to the oxygen atom (OEI) were partitioned among the various 

orbitals by dividing each interaction energy equally between the two 

orbitals involved. It is seen that they are, of course, all positive, 

and their magnitudes small, as would be expected since they represent the 

interactions of relatively small charges which are widely distributed in 

space. Their magnitudes are seen to reflect generally the amounts of 

charge transferred to each orbital. 

4. Interference II 

a. Interference partitioning of the pair density Orbital expan­

sion for the pair density: The electronic pair density resulting from a 

calculation based on atomic orbitals has a unique expansion in terms of 

them, viz., 

TT(1,2) = Z _L p (AaBb | AaBb) [Aa(l) Bb(l)][Ââ(2)Bb(2)] . (II-2-15) 
Aa,Bb Aa,Bïï 
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Here the first orbital product AaBb refers to the first electron of the 

interacting electron pair, and the second orbital product AaBb to the 

second electron. From a physical point of view, the form of Eq. II-2-15 

can be understood by remembering that ir is related to the electrostatic 

interactions between electron densities. The p(AaBb/AaBb)'s will some­

times be referred to as "pair bond-orders". 

It is often instructive to consider ir as composed of two components 

ir and I7"x as given in the equation 

TT(1,2) = 7TC - 7TX = P(1)P(2) - 7Tx(l,2) . (II-2-16) 

Here TJ"C represents the pair density for the classical electrostatic inter­

action of the molecular charge density p with itself, and hence has the 

form p(l)p(2). The generally much smaller component irx represents the 

correction to 7TC which is necessary to obtain the true pair density ir. 

For a SCF type wave function, w~x is everywhere positive, and can be inter­

preted as corresponding to the seIf-repulsions of electrons. These 

seIf-interactions are erroneously included in u~c and must be taken out in 

order to get the true interelectronic interactions (24). 

Interference related pair densities: The terms constituting the 

partitioning of 77", as given in Eq. II-1-18, can be grouped into interfer­

ence and non-interference related terms. The definition of the 

interference related terms (TT***, TT^" , and TJ~**) is chosen in a manner very 

much analogous to that used in obtaining p*, i.e., by assuming that each 

interatomic orbital pair generates certain characteristic interference 

terms independently of the other pairs, and that the pair bond-orders act 
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merely as weighting factors. This partitioning is carried out by 

expressing the orbital products of Eq. II-2-15 in terms of <AaBb> and 

2 2 
(Aa +Bb ) according to Eq. II-2-8. For the coulombic part, ir , this 

procedure is equivalent to substituting the partitioning of p (into p* 

and pP+pT) in p(l)p(2). 

The above described procedure yields two types of interference 

—2 1 
related terms, viz., those proportional to <AaBb>*Aa , and others 

proportional to <AaBb>•<AaBb>. 

The terms proportional to <AaBb>»Aa^ constitute and their 

form is seen to agree with their conceptual interpretation as correspond­

ing to the electronic interaction between p^(Aa) + p-*- (Aa) and p^(AaBb). 

For this reason, the energies arising from them, after being summed over 

the orbitals Aa of atom A, are combined with the nuclear attraction 

energy of p^(AaBb) in the field of the nucleus of A, to give a shielded 
i 

nuclear attraction energy for the interference density p*(AaBb) with 

respect to atom A. 

In order to keep the transfer and nontransfer energy terms separated, 

the shielding electronic interactions between the p^(Aa)1 s and p*(AaBb)1 s 

were taken out of the above terms and tabulated separately as charge 

transfer contributions to the interference energies.^ Both the shielded 

^The partitioning also results in terms proportional to <AaBb|AaAa'>, 
but these are so small that they will not be elaborated further here. 

^In separating out these interactions, it was assumed that they are 
completely of a coulombic quasiclassical nature and therefore have pair 
density terms of the form pT(Aa)pi(AaBb). This assumption is not 
completely justified, but the smallness of the terms involved, coupled 
with the fact that total electronic interactions are usually about 90 per­
cent coulombic, suggests that the error so introduced should be relatively 
small. 
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nuclear attraction energies for the neutral atoms, and those due to the 

changes in the shielding because of charge transfer, are listed in 

Figure 5 in the row SNA. 

The second type of interference terms, i.e., those proportional to 

<AaBb>»<AaBb>, constitute tr** of Eq. II-1-18, and are interpreted con­

ceptually as corresponding to electronic interactions between pi(AaBb) 

and p*(AaBb). These interactions are summed up according to orbital 

products on the basis of dividing the interaction energy equally between 

the two orbital products involved. 

b. Potential contributions to the interference energy in HgO 

The shielded nuclear attractions (SNA) of the promoted oxygen and hydro-
I 

gen atoms for the interference densities p^(HhOa) are given in the left 

and right sides respectively of the seventh column of Figure 5. The 

changes in these terms due to charge transfer are given in the left and 

right sides respectively of the eighth column. The shielded nuclear 

attractions (SNA) of the opposite H' atom for the p^(HhOa)1 s are given 

in the tenth column of Figure 5, with the corresponding changes due to 

charge transfer being given in the eleventh column. 

From the neutral shielded nuclear attractions of the seventh column, 

it is seen that the two bonding-orbital pairs HhOb and HhOy follow the 

total effects for the OH bond, which were discussed in Sec. II-1-3, and 

in fact determine the nature of the total effects. Thus the central 

negatively charged regions of the interference density p^(HhOb) and 

p*(HhOv) are shifted very close to the H atom, so that their interactions 

with that atom become attractive instead of repulsive as in a homonuclear 
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situation. 

The shielded nuclear attractions for p^(HhO/ ), although similar in 

sign to those for the bonding orbital pairs, have a different origin. 

First, the central region of p*(HhOl ) is positive in charge, since 

p*(HhOl ) is an antibonding interference density. Secondly, since the 

OJL orbital lies toward the "back" of the oxygen atom, this central 

region of p*(HhOjl ) lies close to the oxygen atom as was the case with 

the bonding orbitals. This results in p*(HhO./ ) being attracted by the 

H atom, as it would be in a homonuclear case, and being repelled by the 
I 

0 atom (which is opposite to the homonuclear case), due to the predomi­

nance of the repulsion of the 0 atom for the large central positive region 

of p*(Hh<X2 ) close to it. Another situation which no doubt contributes 

to the repulsion of p*(HhOj? ) by the oxygen atom is the fact that this 

atom has its greatest affinity for negative charge on the side towards 

the hydrogen atoms, and therefore has its greatest repulsion for positive 

charge just where the large positive region of p*(HhQ/ ) is located. In 

comparison with the shielded nuclear attraction terms for the bonding 

orbital pairs, those for pI(HhO/ ) are weak. This again indicates a 

weaker interference, which is due to the small overlap between the Qi. 

and Hh orbitals. 

The negative potential energy of p^(HhOx) with respect to the shield­

ed oxygen atom (-.38 ev) occurs because the electronic interactions, 

which we interpret as being between p*(HhOx) and the promoted oxygen 

electrons, are of an attractive character instead of being repulsive. 

This is because these interactions are of the same sort which led to the 



www.manaraa.com

negative energy arising from Tr^^(OHjOH), which was pointed out in Sec. 

II-B. Since this latter effect will be discussed in detail a little 

further on, the present effect will not be further elaborated on here. 

The energies of the p*(HhOa)'s with respect to the shielded (oppo­

site) H1 atom are seen to follow the general trend except for that of 

p*(HhOjE ), which is essentially zero. This latter is again due to the 

close proximity of the central positively charged region of p*(HhO/ ) to 

the oxygen atom, so that the interactions of the H atom with both the 

positively and negatively charged regions of pI(HhOj0 ) are about equal. 

As mentioned earlier, the terms representing the electronic interac­

tions which arise between the p^(HhOa)'s are divided up and summed 

according to the orbital products HhOa. For the various orbital products 

of the OH bond, these sums are given in the seventh column of Figure 5 

in the row labeled OEI. 

For the HhOy orbital pair there is the expected repulsion (.34 ev), 

which is actually considerable considering the diffuse and overlapping 

natures of the interacting charge distributions, i.e., p^(HhOy) with the 

various p^(HhOa)'s. With the HhOi, HhO^. , and particularly the HhOx 

orbital pairs, negative rather than positive contributions are found, and 

they lead to the over-all attractive interaction arising from TT**(0H|0H), 

which was noted in Sec. II-B-3. The origin of these contributions is 

best seen from a consideration of the HhOx orbital pair. As noted 

earlier, p*(HhOx) is identically zero because the bond-order p(HhOx) is 

zero for symmetry reasons. However the orbital product HhOx is not 

identically zero, and hence there exist contributions to 7f of the form 
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p(HhOx/HhOx) (HhOx)(HhOx) which give rise to electronic interaction ener­

gies. (Pair density contributions of the form p(HhOx/HhOa)(HhOx)(HhOa), 

with Oa^Ox, lead to vanishing energy integrals because of symmetry.) 

These contributions to 7T actually arise from the exchange term 7TX, since 

the coulomb term 7j"c vanishes on account of p*(HhOx) being identically 

zero. Similar markedly negative energy contributions were observed 

earlier which were interpreted as interactions between p%(HhOx) and 

pP(0). 

In view of the significance of irx discussed earlier, these contribu­

tions must be considered as self-repulsions of electrons which are shared 

by the Ox and Hh orbitals.* As pointed out in Sec. II-B, these energy 

contributions appear to be related in character to those terms which 

give rise to Hund's rule for energy levels of different multiplicity. 

5. Sharing penetration 

a. Partitioning of the interference free density The interfer­

ence free terms occurring in the general partitioning of ir, given in Eq. 

II-1-18, are obtained by subtracting from ir the interference related 

terms discussed in the preceding section. Thus they are found to be 

•'•It is seen from this that the sharing of electrons between two 
orbitals does not necessarily lead to an interference term for the 
electron density. This arises from the fact that it is not justified 
to identify the electrons with the molecular orbitals of an SCF wave 
function. 
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/ + + tQCT + ̂ SPT = r _ (7rIP + ̂ IT + ̂  

=2 2 q(Aa|Bb)Aa2(L)Bb2(2) 
Aa Bb 

+ 2 2 2 2 q(AaAa|Bb)Aa(l)Aa(l)Bb2(2) 
A a,a B b 
a a 

+ 22 p (AaAa I AaAa)Aa( 1)Aa( 1)Aa( 2)Aa( 2) . 
A a,a 
a a 

(II-2-17) 

The first summation on the right hand side of this equation is by far the 

most important. The second summation gives rise to an entirely negligible 

energy, since both the q(AaAa|Bb)'s as well as the corresponding elec­

tronic interaction integrals are very small. The last summation is small, 

though not negligible, since the p(AaAa|AaAa)1 s are not small, but the 

corresponding integrals are.* 

Since different atomic orbitals of the same atom are orthogonal, the 

last two summations of the right side of Eq. II-2-17 vanish when the pair 

density of that equation is integrated over pair density space. Further­

more , since the atomic orbitals are normalized, and this 

'"There are no contributions to the pair density of Eq. 11-2-14 
of the form (AaAaJAa'Aa1), where a^a' and afâ.since the original T 
of Eq. II-2-12 contained no such terms, and the interference 
partitioning resulted in none. The original tt did not contain these 
terms because, for the valence atomic orbitals, the intra-atomic 
parts of p are diagonal, and this results in the intra-atomic parts 
of 7r being diagonal for a SCF wave function where tt is constructed 
from p by a given relation. 
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integration'*' gives the total number of electron pairs, viz., N(N-l)/2, 

we have 

l/z/T(TTP + tt P̂ + irQCT + TTSPT)dV1dV2 =1/2 L E q(Aa|Bb) = N(N-l)/2 . 
Aa Bb 

(II-2-18) 

Hence, q(Aa|Bb) is called the pair population for the orbital pair AaBb, 

i.e., the probability of finding an electron in orbital Aa simultaneously 

with another one in orbital Bb, times the number of electron pairs. The 

non-negligible first and last summations of Eq. II-2-17 are given in 

terms of contributions of orbital pairs, with the major contributions 

having the coefficients q(Aa|Bb). This is quite analogous to pp + 

being given as a sum of orbital contributions with populations q(Aa). 

As a consequence of the decomposition of Eq. II-2-16 of the original 

pair density ir, the interference free pair density of Eq. II-2-17 consists 

of a coulombic part and an exchange or self-pair-density part. Since the 

interference partitioning of tt is such that the decomposition of ir^ = 

p(l)p(2) is just that resulting from substituting the partitioning of 

p in p(l)p(2), the coulombic parts of the pair density of Eq. II-2-17 are 

of the form q(Aa)q(Bb)Aa^(l)Bb^(2), and hence belong to the first summa­

tion. Thus we have 

q(Aa|Bb) = q(Aa)q(Bb) - qx(Aa|Bb) (II-2-19) 

i r 
The integration in question is understood to be 1/2 Idv]dv2 so that 

each pair of volume elements is only counted once. This ^ must be since, 
by definition, 7r(xi,x2) gives the total number of pairs between the points 
xi and x2« The same integration convention applies also to the calcula­
tion of the electronic interaction energies. 
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where the qx(Aa|Bb)'s arise from the interference free part of the ex­

change pair density TTx. It follows furthermore that the last two 

summations of the right side of Eq. II-2-17 arise entirely from the 

interference free part of irx> which in part accounts for their smallness. 

If, now, the partitioning of q(Aa) in terms of qP(Aa) and q^(Aa), 

as given in Eq. II-2-12, is substituted into the coulombic terms of Eq. 

II-2-19, then those terms yield the following contributions to Eq. II-2-

17: the coulombic intra-atomic parts of irp, all the interatomic parts 

of TR^, and all parts of TTQCT. The latter two have already been discussed 

in the previous section in connection with the neutral quasiclassical 

interactions of the promoted atoms, and the quasiclassical effects of 

charge transfer respectively. 

It remains therefore to find the intra-atomic exchange terms of the 

promotion state pair density 7r*\ and also the terms 7T>P and of Eq. 

II-2-17 which describe the sharing penetration due to electronic sharing 

before charge transfer, and due to charge transfer, respectively. The 

latter two terms must be entirely exchange in character, since the 

coulombic pair density of Eq. II-2-17 has been exhausted by its contribu­

tions to Tand . This is in agreement with our earlier interpreta­

tion of no electronic density changes being associated with TP*P and 

Since the contributions of the third sum of the right side of Eq. 

II-2-17 are completely intra-atomic in character, and furthermore are of 

a sort which we know the promoted states must contain, they are 

considered to comprise part of the intra-atomic 7TP. The contributions 

to the second sum are considered to constitute part of 7T P̂, since the 
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conservation relation between the electron density and pair density is 

immediately satisfied if this is assumed. Actually these latter terms 

are so small that their interpretation is of no consequence whatsoever. 

The contributions of the qx(Aa| Bb) 's to TTp, i t5?, and TTSPT, will 

be examined in the sections to follow. They are given by the quantities 

qxP(Aa|Bb)'s, qx®P(Aa|Bb), and qxSPT(Aa|Bb)'s, respectively, which 

satisfy the relation 

qx(Aa|Bb) = q^(Aa|Bb) + qSp(Aa|Bb) + qP(Aa|Bb) . (II-2-20) 

Additional definitions are required in order to obtain values for the in­

dividual components in Eq. II-2-20. The definitions adopted here lead to 

the following scheme: the qx̂ -(Aa|Bb)'s, and thereafter the qxP(Aa|Bb)'s, 

are calculated separately. Then the qp(Aa|Bb)'s are obtained by sub­

tracting the qSPT(Aa|Bb)'s and q p̂(Aa|Bb)'s from the corresponding 

qx(Aa|Bb)'s. In view of the above, then, the four components of Eq. 

II-2-17 are given by expressions of the form 

-/ = Z Z qP(Aa)qP(Bb)Aa2(l)Bb2(2) 
Aa Bb 

- Z Z qx(Aa|Aa)Aa2(l)Àâ2(2) 
A a,a 

+ Z Z p(AaAa|AaAa)Aa(l)Aa(l)Aa(2)Aa(2) (II-2-21) 
A a,a 
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TTSP = Z S qK(AaI Bb)Aa2( 1) Bb2(2) 
Aa t$b 

+ Z Z_ Z q(AaAa|Bb)Aa(l)Aa(l)Bb2(2) (II-2-22) 
A a,a Bb 

7TSPT = - Z Z q P̂T(Aa|Bb)Aa2(l)Bb2(2) (II-2-23) 
Aa Bb 

TrQCT = Z Z qP(Aa)qT(Bb)Aa2(l)Bb2(2) 
Aa Bb 

+ 1/2 Z Z qT(Aa)qT(Bb)Aa2(l)Bb2(2) (II-2-24) 
Aa Bb 
Aa^Bb 

b. Charge transfer effects on the sharing penetration , The non-

coulombic effects on the pair density due to charge transfer, given by 

Eq. II-2-23, are found by an argument which is similar to that used in 

finding pT. We set (24) 

qSpT(Aa|Bb) = [qT(Aa)X(Bb)+X(Aa)qT(Bb)]| Vx(Aa|Bb) j  (II-2-25) 

where X(Aa) and "A(Bb) are parameters which are determined by the following 

conservation relation between the transfer parts of the electron density 

and pair density.^ 

Z qxPT(Aa|Bb) = qT(Aa) (II-2-26) 

•'•This equation results from the conservation relation / /dv]irx(l,2) = 
p(2) which establishes a generally valid connection 
between the density and pair density of any system. 
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The Vx(Aa|Bb)'s are pair density quantities analogous to the v(Aa)'s, 

and are given by 

Vx(Aa/Bb) = qx(Aa|Bb) - px(Aa2|Bb2) (II-2-27) 

where the px(Aa2|Bb2)' s are the exchange parts of the p(Aa2|Bb2)'s of 

Eq. II-2-15. 

c. Neutral sharing penetration effects The effect on the pair 

density arising from sharing penetration between the neutral promoted 

atoms constitutes TT p̂ = given in Eq. II-2-22. 

Since there are no exchange, i.e., self-repulsion, pair density 

terms between the promoted atoms before electron sharing and penetration 

is allowed, any parts of the interatomic qx(Aa|Bb)'s which remain after 

the subtraction of the qx̂ (Aa|Bb) 1 s from the qx(Aa| Bb) 1 s must be ^ 

considered to arise from sharing penetration. Hence they are identified 

as the interatomic parts of 7T p̂. 

The intra-atomic parts of cannot be obtained in this way, since 

the intra-atomic parts of are not necessarily zero. These intra-

atomic parts of are found by the following reasoning. We use the 

interatomic contributions to as a measure of the amount of electron 

sharing penetration for the various orbitals and consider 

qSP(Aa) = £'qx
P(Aa|Bb) A ^ B (II-2-28) 

Bb 

as a measure of the total interatomic electron sharing of the orbital 

(Aa). The intra-atomic terms of ir P̂ are then defined by 
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q|P(Aa|Aa) = -qsp(Aa)qSP(Aa)/2qSP(Aa) . (II-2-29) 
a 

The choice of the numerator in Eq. II-2-29 is based on the following 

arguments. Since the intra-atomic terms of 7T P̂ referring to two orbitals 

Aa and Aa describe self-repulsions of certain electrons which are shared 

between them, these terms are affected by interatomic sharing only to the 

degree that these same electrons are being shared with the other atoms, 

i.e., to the degree that both orbitals Aa and Aa are acquiring interatomic 

sharing contributions. Thus, if an electron is not involved in inter­

atomic sharing, there is no reason why its sharing within the atom should 

be affected when other electrons change their internal sharing situations 

due to external sharing. These other electrons merely substitute for 

each other in their interactions with the first electron. 

The denominator of Eq. II-2-29 is a consequence of the choice of 

the numerator and the conservation relation 

L q|P(Aa|Bb) =0 (II-2-30) 
Bb 

where the sum runs over both inter- and intra-atomic terms. This condi­

tion expresses the fact that sharing penetration is considered to change 

the pair density without any change in the electron density. 

d. Sharing penetration effects in HgO The values of the 

qxP(Aa|Bb)'s and q^^(Aa|Bb)1 s in the case of HgO, obtained from Eqs. 

II-2-29 and II-2-25 respectively, are given in Figure 3. 

The pair populations describing the "neutral" (i.e. before charge 
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transfer) sharing penetration'for the Ob and Oy orbitals are seen to be 

quite large, whereas those involving the 0> orbital are comparatively 

small. This reflects the fact that the Ob and Oy orbitals strongly 

share electrons with the hydrogens, while the Ojt orbital does so much 

less. 

The almost negligible smallness of the terms involving the 0X 

orbital is however peculiar, since the interference terras, which were 

discussed earlier, indicated small but not negligible sharing for this 

orbital, although in an antibonding manner. It may be that this result is 

similar to the negative sharing penetration between the two hydrogen 

atoms, noted in Sec. II-B-4; for in both instances, there are antibonding 

interactions involved. Furthermore, negative sharing penetration terms 

have been observed in a number of other molecules in connection with anti-

bonding interactions (23, 12). These results seem to indicate a possible 

conflict between the concept of sharing penetration and the method we have 

used to obtain a quantitative measure of it. It appears however that 

there is at least a consistency in the way in which the negative terms 

arise. While it is possible that they come about because of limitations 

in the wave functions being analyzed, it seems more likely to us^ that 

It may be noted that the negative sharing penetration energy which 
arises between the two hydrogen atoms is a direct result of the sign of 
qx(Hh|Hh'), and that the latter arises directly from the interference 
partitioning. It does not arise from any arbitrariness in the definition 
of the interference density p*(Hh|Hh1), which is uniquely determined in 
this case. It may arise from our particular way of extending the inter­
ference partitioning to the pair density, though this seems unlikely. 
Also it may arise from inaccuracies in the present wave function, which 
are known to be serious in the region between the two hydrogen atoms, due 
to the general breakdown of the MO method for large internuclear distances, 
and perhaps to inaccurate three-center integrals. This possibility too 
seems somewhat unlikely, since large negative sharing penetration terms 
have been observed even in diatomic molecules. 
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the physical picture may involve a fundamental conceptual omission. 

The pair populations describing charge transfer sharing-penetraLion 

do not differ greatly for the orbitals involved. According to our 

picture, they represent changes in penetration arising from the slight 

shift in the probability densities of the shared electrons, attending 

charge transfer. In view of the very small sharing penetration for the 

OjJ orbital before charge transfer, the change in this penetration due 

to charge transfer would seem unduly large. However, it is in line with 

the sharing indicated by the interference terms. 

For both the neutral and the transfer penetration, the energies 

arising from the intra-atomic pair populations have been divided up 

equally between the two orbitals involved, and then summed for each 

orbital. The resulting sums are given in Figure 4, under neutral and 

transfer sharing penetration interactions. As would be expected in view 

of our method of dividing and then summing, the energy contributions for 

the orbitals follow the trend of the pair populations discussed above. 

The energies from the interatomic pair populations of the neutral 

and transfer penetration are given in Figure 5 in the fourth and fifth 

columns respectively. These energies too are seen to reflect their 

corresponding pair populations. No dividing and summing by orbital 

pairs was necessary in this case, since the hydrogen atom has only one 

orbital so that there is a one to one correspondence between the 

orbital pairs and the interatomic pair populations. 
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6. Promotion 

a. Promotion densities From Eqs. II-1-16 and II-1-18, the 

electron density of the promoted state of an atom A is given by 

pP(A) = Z qp(Aa)Aa2 (II-2-31) 
a 

and from Eq. II-2-18, the corresponding pair density by 

if (A) = Z qp(Aa)qp(Aa) - qp(Aa|Aa) Aa2(l)Aa2(2) 
a,a 

+ Z_p(AaAl[AaAâ)Aa(l)Al(l)Aa(2)Àâ(2) (II-2-32) 
a,a 

where qp(Aa) is the orbital population of the orbital Aa of the promoted 

atom A, and the qP(Aa|Aa)'s are those parts of the qx(Aa|Aa)'s which 

remain after the qxP(Aa|Aa)'s and 9xP̂ (A&|Aa)'s have been subtracted. 

The density effects of promotion are defined as the difference be­

tween the densities of Eqs. II-2-31 and II-2-32 and the corresponding 

densities for the ground state of the atom. For the hydrogen atoms the 

choice of the ground state densities is unique. However for the oxygen 

atom any of a number of ground state densities could have been chosen, 

each corresponding to a different orientation of that atom. Of these, 

that orientation was selected in which the 2px orbital is doubly occupied, 

and the 2py and 2pz orbitals each singly occupied. (The Is and 2s 

orbitals are of course doubly occupied.) This is a natural choice since 

then the promotion effects do not involve the 2px orbital, which has 

already been seen to be largely inactive in the chemical binding due to 
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its being a molecular orbital in itself. The electron density of the 

ground state of an atom A is given by 

pG(A) = S qG(Aa)Aa2 (II-2-33) 
a 

where qG(Aa) is the number of electrons in the orbital Aa. The cor­

responding pair density is given by 

7tG(A) = pG(A)pG(A) - ttG(A) 

= Z_qG(Aa)qG(Al)Aa2(1)Aa2(2) - Z_qG (Aa|Aa)Aa2(1) Al2(2) 
a ,a a,a 

(II-2-34) 

G — 
where the qx(Aa|Aa)1 s are the exchange pair density elements of the 

ground state. 

In general, promotion contains two kinds of effects, viz., contrac­

tive (or expansive) promotion which is reflected by an increase (or 

decrease) in the orbital exponents, and hybridization promotion which 

results in the formation of the valence orbitals by the hybridization of 

the spherical orbitals. There are no promotion effects for the hydrogen 

atoms, since the wave function does not allow mixing with higher hydrogen 

orbitals, nor variation of the orbital exponents of the Is basis orbitals. 

Also, since the orbital exponents of the basis orbitals of the oxygen 

atom were not varied, we have to deal only with hybridization promotion 

there. 

The electron densities of Eqs. II-2-33 and II-2-34 are given in 

terms of the original spherical Slater type orbitals, since these orbitals 
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are the appropriate ones for the description of the free atom. (If 

other orbitals were used, the expression for pG(A) would contain cross 

terms between the orbitals.) Since promotion involves a distortion of 

the densities of the free atoms in their ground states, which are most 

simply represented in terms of Slater type orbitals, it seems more 

significant to investigate the effects of promotion in terms of these. 

We therefore transform the electron densities of the promoted atoms, 

given by Eqs. II-2-31 and II-2-32, back to the original Slater type 

orbitals, before subtracting out the ground state densities. 

When the electron density pP(A) of the promoted atom is transformed 

from the valence hybrid orbitals to the Slater orbitals, it. is no longer 

a simple sum of orbital contributions as in Eq. II-2-31, but comes to 

contain contributions from cross terms between the Slater orbitals. 

Furthermore, the pair density of the promoted state comes to have terms 

of the form (AaAa|Aa1Aa') and (AaAa|Aa' ). Consequently, the promotion 

densities, and therefore the promotion energy, contain such cross terms. 

In the subsequent sections we will attempt a decomposition of the 

promotion energy into a sum of orbital contributions. From the fore­

going it is clear that such a partitioning requires considerable, if 

somewhat arbitrary, partitioning of cross terms among the orbitals 

involved. 

b. One-electron energies As was mentioned in the previous sec­

tion, the difference pP(0)-pG(0) contains cross terms, when expressed in 

terms of the original spherical orbitals. Thus, the kinetic and nuclear 

attraction promotion energies also contain contributions from orbital 
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pairs, which are given in Figure 4. In the present case such cross terms 

occur only between the Is and 2s orbitals, a result which is due partly 

to the vanishing of the kinetic and nuclear attraction integrals between 

p-type and s-type orbitals, and partly to the fact that pP(0) contains 

no cross terms between orbitals of different molecular symmetry. 

If 

y(Aa) = qP(Aa) - qG(Aa) (II-2-35) 

denotes the change in population of orbital (Aa) as a result of promotion, 

it seems reasonable to divide up the cross terms among the two orbitals 

in proportion to their y(Aa)'s. Thus if the y(Aa) of an orbital vanishes, 

it would not be reasonable to attribute any kinetic or nuclear attraction 

promotion energy to it. 

The kinetic and nuclear attraction promotion effects for the 

individual orbitals, resulting from this partitioning, are given in 

Figure 4. 

Both the 2s and 2py orbitals suffer decreases in kinetic energy and 

increases in potential energy, because they lose electronic charge to 

the 2pz orbital. Concomitantly the opposite effects are observed for 

the latter. Both the kinetic and potential energies of the 2s orbital 

are somewhat greater than those of the 2p orbitals. Therefore the almost 

complete cancellation of the kinetic and potential energy effects for the 

2s, 2py, and 2pz orbitals occurs only because the 2s orbital receives a 

substantial promotion contribution from its cross term with the Is 

orbital. The potential and kinetic energy contributions of this cross 

term are therefore of considerable importance in understanding the over­
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all kinetic and potential energy effects of hybridization promotion. 

The exact significance of this electron density cross term is clear, but 

it may represent to some extent an attempt at contraction promotion, 

which was not allowed through variable orbital exponents. 

c. Electronic interaction energy The transformation of 71^(0) 

to the original spherical orbitals results in three types of terms in 

the electronic interaction promotion energy, viz., terms of the types 

21 —2 —, — (Aa IAa ) and (AaAa|AaAa), and terms involving more than two orbitals. 

The terms which contain more than two orbitals are very small, and are 

divided up among the various orbital-pairs which they contain on the 

basis of how many times the orbital-pairs occur in the term, with one 

orbital of the pair being associated with one electron, and the other 

with the other electron. Thus a term of the form (ab|cd) is divided 

equally among the four pairs ac, ad, be, and bd. This is a somewhat 

arbitrary division, but in view of the extreme smallness of the terms 

involved, it cannot cause any misinterpretation. Thus the electronic 

interaction promotion energy is reduced to contributions from orbital-

pairs only, which are given for. the oxygen atom in Figure 4. 

As with the kinetic and nuclear attraction terms, we now proceed 

to divide these orbital-pair contributions among the orbitals. Consider 

first their coulombic parts. Since y(Aa) is the change in population of 

the orbital Aa during promotion, the coulombic promotion pair density 

for the AaAa orbital pair is 

qP(Aa)qP(Aa) - qG(Aa)qG(Aa) = y(Aa)q(Aa) + y(Aa)q(Aa) (II-2-36) 
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where qG(Aa) is the initial population of orbital Aa, and q(Aa) is 

l/2[q~(Aa) + qi(Aa)]. Now if the y(Aa) of an orbital is zero, it would 

be unreasonable to attribute any of the coulombic promotion to it. More 

generally, it would appear sensible to attribute to orbital Aa the frac­

tion y(Aa)q(Aa)/[y(Aa)q(Aa) + y(Aa)q(Aa)] of the coulombic promotion 

energy between orbitals Aa and Aa. 

Since the exchange part of the electronic interactions can be viewed 

as subtracting out the seIf-repulsions of the electrons, we partition it 

exactly like the coulombic part. Thus, we partition the total orbital-

pair contributions by means of Eq. II-2-36. The resulting orbital 

promotion effects are given in Figure 4. Both the 2s and 2py orbitals 

suffer a decrease in electronic interaction energy during promotion, no 

doubt due to the fact that they both lose electrons thereby decreasing 

greatly their external and internal electronic interactions. For the 

same reason the 2pz orbital shows an even stronger rise in electronic 

interaction energy, in that it accepts the promoted electrons from the 2s 

and 2py orbitals. The Is orbital also suffers a slight decrease in elec­

tronic interaction energy due to the loss of a very small fraction of its 

electronic population during promotion. The net result of hybridization 

promotion on the electronic interactions then is to increase them some­

what (4.5 ev) , due to the shift of electrons into the 2pz orbital from 

the 2s and 2py orbitals. In a more general way the increase in energy 

may be viewed as resulting from the greater concentration of electronic 

charge along the z axis, as compared to the ground state in which the 

charge is symmetrically distributed in the y-z plane. This greater 
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concentration results from the greater accumulation of charge in the Ojl 

and Ob orbitals, both of which have greater "internal" electronic 

interactions (which are the strongest type) than the 2s and 2p orbitals. 

The essential conclusion to be drawn from the discussion of promotion 

is not the picture in terms of particular atomic orbitals, but the result 

that the promotion energy has two components: a small increase in the one-

electron energy, seemingly connected with a pseudo-contractive effect, 

and a somewhat larger increase in the electronic repulsion energy, due 

to the slight compression of the valence electrons around the z-axis. 

It should be kept in mind that the numerical results may change 

considerably when contractive promotion is taken into account by the 

variation of the orbital exponents. 
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III. IS THE SHIFT OF CHARGE INTO A BOND RESPONSIBLE FOR THE 
POTENTIAL ENERGY LOWERING DURING MOLECULE FORMATION? 

A. Introduction 

The application of the analysis of binding energies, developed by 

Ruedenberg (24), to a number of molecules has led that author to suspect 

that the shift of electronic charge into the bond region, which is known 

to accompany chemical binding, may not be the principle factor in the 

lowering of potential energy during molecule formation. Here this analy­

sis (24) is given for the binding energy of H^. This is followed by a 

thorough examination of the potential energy effects of "the shift of 

charge into the bond region" in the case of H^. The results indicate 

that, in this molecule at least, the lowering of potential energy upon 

bond formation is in fact caused primarily by a contraction of the elec­

tronic charge cloud around each of the two nuclei, and not by the shift 

of additional charge into the so-called "low potential" region between 

the nuclei. 

The above investigations were carried out on the Dickenson wave 

function (8) for H^. By allowing for polarization of the Is orbitals 

through the admixture of 2pcr-type orbitals, this function is very nearly 

exact, giving a binding energy of 2.73 ev as compared to the exact value 

of 2.79 ev. It was decided to carry out the examination of "the potential 

energy effects of charge shifts" on this function, so as to avoid as much 

as possible any wrong interpretations which might result from a more 

approximate function. 
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B. Analysis of the Binding Energy and the Shift 
of Charge into the Bond Due to Overlap 

The analysis (24) begins by assuming hypothetically that the sepa-

jJL J. 1 

rated H ions (or the H atom, if the system is considered as H + H ) 

2 
are promoted to certain "promoted states". These are unique in that 

they represent as far as one can go in describing the actual condition of 

+J-
the H 2 ions in the final molecule, without interatomic terms becoming 

involved. One then imagines that the two promoted H"^ ions are brought 

together to the equilibrium internuclear separation, where they interact 

in a coulombic quasiclassical fashion, i.e., we compute their classical 

electrostatic interactions at this distance, considering that their 

charge distributions remain fixed at what they were when the ions were 

+J-
promoted, but separated. Finally, we imagine that the promoted H 2 wave 

functions "interfere" to give the resultant molecular wave function. 

This interference is exactly analogous to that of classical waves, except 

that the requirement for a normalized resultant function results in an 

overall scaling down of the interfering functions when constructive 

interference occurs, and a similar scaling up when destructive interfer­

ence occurs. 

''"At large internuclear distances the wave function of the ground 
state of H2+ approaches that of a hydrogen atom Is function on either of 
the two centers or any normalized linear combination of these. Since the 
symmetric linear combination corresponds most closely to the molecule, 
this is the limiting function which will be referred to here. 

ese energy changes are just those of a singly occupied Is orbital 
when its orbital exponent (effective nuclear charge) changes from unity 
to that of the Is orbital of the Dickenson function. 
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The Dickenson function is the simple normalized sum of two 

normalized hybrid orbitals 

H = N(1SA + C2PO-a) , and ̂  = N(LSB + CZPOG) (III-L-L) 

on the two centers A and B respectively. Here N is their normalization 

constant. The polarization parameter (c) and the effective nuclear 

charges of the Is and 2p(T orbitals are taken so as to give the best total 

molecular energy. The 2p<r orbital on each center is directed towards the 

other center. 

The scheme of the above described analysis is seen to be immediately 

satisfied if we consider the iC /s, each "occupied" with 1/2 electron, to 

represent the promoted H"*"-5 wave functions (or for the H + H* system, the 

promoted H atom represented by the singly occupied jC ). The orbital 

represents, i.e. is "occupied" by, 1/2 electronic charge if it is 

multiplied by l/V?, since then its square, which is its charge density, 

integrated over all space is 1/2. 

•f* 
For the 5^ molecule the electronic charge distribution is given by 

with N = 1 

We have in effect partitioned p into two parts: 

PP = H %K2 + %-XGZ 

and 
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The energies arising from the above described effects are given in 

Figure 6. It is seen that contractive promotion, computed by excluding 

the 2p orbital from the promoted state, results in a very strong rise in 

kinetic energy and a very strong drop in potential energy. This is as 

expected (24). The electronic charge is brought nearer the nuclei, and 

the curvature of the wave function also increases. 

The deformation promotion, which reflects the effect of bringing 

the 2p function into the promoted state, is seen to give a very slight 

rise in kinetic energy and a small rise in potential energy. Since both 

the kinetic and nuclear attraction energy integrals between Is and 2p 

orbitals on the same center vanish, these effects represent the changes 

in energy of the small amount of charge which is transferred into the 2p 

orbital during deformation. Thus the kinetic energies of both orbitals 

are nearly the same, (no doubt due to the fact that the two orbitals have 

about the same "size" and overall curvature) but the nuclear attraction 

energy of the Is orbital is greater (as might be expected because the 2p 

orbital has a node at the nucleus). 

The quasiclassical interactions give a small drop in potential 

energy, in contrast to the situation with a wave function made for s-type 

orbitals only (25). This is due to the polarizing effect of the 2p orbital 

on the promoted state charge density. Thus, the interaction of the 

nucleus of one center with the ls2p dipole charge distribution of the 

other center is seen to be the attractive effect. The interactions with 

the lsls monopole and 2p2p quadrupole charge distributions (which, because 

their orbital parts contain nonvanishing electronic charge, include in 



www.manaraa.com

99 

both cases enough of the nuclear charge to form a neutral unit) are seen 

to be slightly repulsive. 

The interference is seen to lower the kinetic energy strongly, and 

raise the potential energy somewhat. This is again as expected, since 

the constructive interference and its associated renormalization effect 

on the total wave function results in a shift of electronic charge from 

the regions near the nuclei to the central bond region. Thus electronic 

charge is moved to regions of higher potential energy, and lower kinetic 

energy. The kinetic energy contribution from a given point in space is 

proportional to the square of the gradient of the wave function, and this 

is very high near the nuclei as seen from Figure 7. 

Thus, the present analysis fully confirms the findings and conclu­

sions of Ruedenberg (24), namely that, in terms of atomic orbitals, the 

essential aspects of chemical binding must be described as an interplay 

between interference (lowering kinetic and raising potential energy) and 

contractive promotion (raising kinetic and lowering potential energy). 

This situation is not changed by the admixture of p-orbitals, i.e., when 

allowance is made for polarization of the atomic orbitals. Even though 

such polarization, predictably, leads to an attractive, i.e., negative, 

quasiclassical contribution to the bonding energy, these quasiclassical 

effects cannot replace the dominant effects of interference and contrac­

tive promotion. 

Now, since the so-called overlap effects are associated with inter­

ference and not with promotion, it follows that the accumulation of 

charge in the bond due to overlap not only does not lower the potential 
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energy but, in fact, is associated with an increase in potential energy. 

In view of this result, one may raise the question whether it would be 

possible to define the "accumulation of charge in the bond" in a dif­

ferent way and without reference to overlap, and whether any such 

definition could possibly lead to a lowering of the potential energy. 

This question will be considered in the subsequent section. 

C. Other Definitions of "Charge Shifted into the Bond" 
and Their Energy Effects 

1. Partitioning of charge density based on symmetry 

Three methods were tried for separating the effects of the two 

charge shifts, i.e. charge shifted into the bond and charge shifted 

toward the nuclei. The first starts with the statement that none of the 

charge lying along the internuclear axis, on the sides of the nuclei away 

from the center of the molecule, can possibly be considered to have been 

shifted there by a shift of charge into the bond region. In other words, 

while a considerable amount of charge may have been shifted from these 

"outside regions" into the bond, we do not expect that any appreciable 

charge has been shifted into them by any charge shift that can reasonably 

be called "a shift of charge into the bond region". It should be noted 

that this is a very generous definition of "charge shifted into the bond", 

since many more restrictive definitions could be made. On the other hand, 

to include any of the charge in these outside regions as "charge in the 

bond", would be almost tantamount to referring to the entire charge 

density of the molecule as "charge in the bond". 

In view of the above, we therefore assume that any of the charge 
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density along the "outside axes" must be charge which was there original­

ly, or was shifted there by the clustering shift about the nuclei. Since 

the clustering charge shift by definition is spherically symmetric about 

each nucleus, we can now quantitatively separate the two charge shifts.^ 

When the potential energy effects associated with these two charge 

shifts are evaluated, it is found that the potential energy is lowered 

*5.36 ev due to the clustering shift, while the shift of the charge 

into the bond lowers the potential energy only .63 ev. The interaction 

energy of a proton with an unperturbed hydrogen atom at the equilibrium 

internuclear distance is .75 ev. 

Thus, we can hypothetically consider the formation of in terms 

of the following three steps: 1 

(1) The H* ions, each having one half electron in a hydrogen Is 

orbital, approach each other unperturbed to the equilibrium 

internuclear separation. There is associated with this step 

an increase of .75 ev in potential energy. (This step can 

equally well be thought of, energy wise, as the approach of a 

proton to an unperturbed hydrogen atom.) 

(2) There is a clustering of part of the charge density of each of 

the ions more closely about its nucleus. There is a drop in 

potential energy of 5.36 ev due to this process. 

^Mathematically, this partitioning is carried out by constructing a 
hypothetical electron density on each nucleus which is spherically 
symmetric and varies radially according to the charge density of the 
molecule along the "outside axes". Each of these "atomic" densities is 
the square of a hypothetical wave function composed of a linear combina­
tion of two Is orbitals and a 2s orbital, all of the Slater type. 
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(3) There is a shift of another part of the charge into the bond 

regions, and away from the outlying regions of the molecule. 

The potential energy is lowered .63 ev due to this shift. 

Steps (2) and (3) can be considered in either order, since they 

involve shifts of different parts of the charge density. 

It is seen that the three changes in the potential energy sum to a 

lowering of 5.24 ev, which for the Dickenson function (8), is the total 

drop in potential energy on molecule formation. 

It is of interest to consider also the kinetic energy changes 
I 

associated with the three above steps. There is of course no kinetic 

energy change in step (1), due to the fact that the wave function remains 

that of a hydrogenic Is orbital. Step (2) raises the kinetic energy 5.59 

ev. Step (3) lowers the kinetic energy 3.07 ev. 

2. A geometrical partitioning of the charge density 

The second partitioning of the charge density was carried out in an 

attempt to analyze the situation from a somewhat different viewpoint. 

Here, the charge density of the final molecule was partitioned into two 

halves by a plane passing through the center of the molecule and perpen­

dicular to the internuclear axis. The potential energy of each of the 

two halves in the field of its own nucleus, and also that of the other 

nucleus, were computed. It was found that the potential energy of each 

half was -16.31 ev in the field of its own nucleus, and -6.72 ev in the 

field of the other nucleus. Therefore the sum of the attractions of the 

nuclei for the electronic "half charges" opposite them is .17 ev less 

than the nuclear repulsion energy, which is e^/R^g = e^/2a^ = 13.60 ev. 
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The meaning of the above partitioning can best be understood by 

hypothetically considering the charge density about each of the separated 

ions to become distorted into the shape of the "half charge". This 

leads to a drop of 5.42 ev in potential energy. If the nuclei are now 

brought to their equilibrium position, the potential energy rises ^. 17 

ev. If the charge distributions of the separated ions had not been 

distorted, and the nuclei brought to the equilibrium position, the rise 

in potential energy would have been ^.75 ev, as was mentioned above. 

We see then that the distortion of the charge distributions gives a 

much larger drop in "intra-atomic" potential energy than "interatomic". 

It is interesting that in both the foregoing charge density parti-

tionings, the lowering of the potential energy due to "intra-atomic" 

effects isw5.4 ev and that due to "interatomic" effects is*'.6 ev. 

3. Partitioning based on hypothetical wave functions 

A still different approach can be taken by constructing a hypotheti­

cal normalized wave function of the Dickenson type which has the value of 

the Dickenson function at the midpoint between the nuclei, but the values 

4-Î-
of the H 2 Is wave functions at each nucleus. This wave function gives 

rise to an electronic charge density which resembles closely that of the 

molecule in the bond region, but near the nuclei resembles that of the 

separated ions. The potential energy corresponding to this wave function 

should therefore, by its difference from that of the true function, tell 

us something about the potential energy lowering due to the build up of 

the charge in the bond. 

It is found that the potential energy for this hypothetical wave 
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function is -29.16 ev, i.e., 1.95 ev less than that of a hydrogen atom. 

Since the rise in potential energy due to bringing the two H+̂  unperturbed 

ions to the molecular internuclear distance is .75 ev, we see that the 

lowering of potential energy due to the shift of charge into the bond 

(as defined by this method) is 2.70 ev. This is about half the total 

drop in potential energy on molecule formation, and is therefore 

considerably higher than the estimates of the previous two definitions. 

The underlying reason for this large estimate is no doubt due to the 

fact that, by building up the charge in the center between the nuclei to 

what it would be in the final molecule, we have also included some charge 

which is shifted there by the radial shift toward the nuclei. This is 

due to the fact that even in an isolated H atom, if we increase the effec­

tive nuclear charge so as to "pull in" the charge cloud, we will build up 

the charge density for some distance out from the nucleus. Actually in 

this case the clustering shift itself builds up the charge density some­

what in the center of the bond. Also the charge shift into the bond 

would no doubt take some charge from the very low potential regions near 

the nuclei, which we have not allowed for here. Thus, this definition of 

"the charge shifted into the bond" probably does not include all the 

"charge shifted into the bond", and definitely includes "charge shifted 

toward the nuclei", which it should not. 

Benjamin Gimarc of John Hopkins University suggested to the author 

that the opposite situation also be examined. Here a wave function was 

constructed such that it had the electronic charge density of the molecule 

at the nuclei. At the midpoint of the bond it had the value of the super-
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Figure 6. Quantitative partitioning of the binding energy of 
Hg (Dickinson Calculation) 
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Figure 7. Graphs of the Dickinson function for (————) , the exact function for (-
and the l//2>Is function for the H atom (— — —) • 



www.manaraa.com

108 

r\ 

m 



www.manaraa.com

109 

position of two }&% charge densities. This function was found to have a 

potential energy 2.67 ev lower than that of the hydrogen atom, so that 

this charge shift results in a total lowering in potential energy of 2.67 

+ .75 = 3.42 ev. 

4. Conclusions 

If the orbital exponent (i.e., the effective nuclear charge in the 

case of n=l orbitals) of a hydrogen Is orbital is increased from 1 to 

1.25, the potential energy drops 6.8 ev, due to the closer clustering of 

the electronic charge about the nucleus. In the approximate wave functions 

for Hg"*" (in particular for the very accurate Dickenson function used here) 

built from atomic orbitals, the orbital exponents are around 1.25. In 

view then of the fact that one does not expect too different a behavior 

of the potential energy of as compared to that of a H atom, when 

the orbital exponents increase from 1 to 1.25, it should not be surpris­

ing that 5 to 6 ev of the lowering of the potential energy must be 

attributed to clustering. 

i 
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IV. LOCALIZED ATOMIC AND MOLECULAR ORBITALS 

A. Introduction 

V. Fock (10) pointed out that a one-determinant many-electron wave 

function is invariant with respect to unitary transformations among its 

molecular orbitals. It is completely determined by the finite-

dimensional function space spanned by these orbitals and does not depend 

on the basis chosen within this space. In particular, the orbitals 

resulting from the Hartree-Fock equations represent only one of the many 

possible unitary bases in the self-consistent-field space, defined by the 

minimization of the energy integral. While they seem to be convenient 

for describing spectral transitions and ionization potentials, it appears 

likely that for an analysis of the intrinsic properties of a particular 

state, for example the ground state, another unitary basis in the self-

cons is tent- field space may be more effective. 

This fact was used by C. A. CouIson (7) who, in discussing the 

dipole moment of the C-H bond, transformed the symmetry molecular orbitals 

of methane into localized molecular orbitals along the four bonds, which 

he called equivalent molecular orbitals. Later, the possibility of 

constructing equivalent orbitals in the presence of a general symmetry 

group was systematically analyzed by J. E. Lennard-Jones (13, 14 and 15). 

Whereas the Hartree-Fock orbitals belong to irreducible representations 

(as long as the Hartree-Fock operator is invariant), the equivalent 

orbitals span reducible representations: certain symmetry operations 

transform one equivalent orbital into another. 
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J. E. Lennard-Jones and J. A. Pople (14) pointed out that the 

equivalent orbitals presumably maximize the sum of the orbital self-

repulsion terms in the electronic interaction energy and therefore 

minimize the "non-classical" off-diagonal exchange terms. Because of 

this property they can be considered as that unitary orbital basis in the 

self-consistent-field space which exhibits maximum "localization". This 

characterization is of interest, because it furnishes a criterion which 

is applicable beyond the scope of the equivalent orbitals, namely within 

one symmetry species as well as in the absence of any symmetry.^ 

Finally J. E. Lennard-Jones and J. A. Pople (15) also suggested that 

such localized orbitals might be the most suitable ones for extending the 

wave function to take into account correlation. For, it seems reasonable 

to expect that they would exhibit a minimum of interorbital correlation, 

so that intra-orbital correlation would remain the essential correction 

(20). Thus A. Hurley, J. E. Lennard-Jones, and J. A. Pople (11) proposed 

to replace each doubly filled localized molecular orbital by a pair 

function. 

In view of this interest in localized orbitals it is remarkable that 

no attempts have been made to develop a method for finding them without 

the help of symmetry. There seems to prevail an opinion that considerable 

difficulties stand in the way. S. F. Boys (3) has suggested to approxi­

mate such orbitals by what he terms "exclusive orbitals". They are 

^That maximum localization might be an appropriate criterion in these 
cases, was first conjectured by J. E. Lennard-Jones and J. A. Pople (14). 
Thereafter the idea seems to have gained more and more ground. 
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obtained by maximizing the product of the distances between the centroids 

of charge of all molecular orbitals, a non-linear process carried out by 

consecutive iterations. There are cases however where the procedure is 

impossible as, for example, between various s-orbitals on one atom. 

Another kind of localized molecular orbital was considered by 

Ruedenberg (24) who defined "valence molecular orbitals" by extremizing 

the total overlap population of the individual molecular orbitals. The 

method, which involves solution of an eigenvalue problem, is again not 

completely general, inasmuch as it does not apply within an isolated 

atom. 

Here we describe an exact method for finding those molecular orbitals 

which maximize the sum of the orbital self-repulsion energies. While the 

process is iterative, its execution is very similar, in method as well 

as complexity, to the solution of an eigenvalue problem by Jacobi's 

method. We propose that the name "localized molecular orbitals (LMO's)" 

be used for these orbitals. Only in the presence of a symmetry group 

can they acquire properties which, under certain conditions, cause them 

to become equivalent orbitals. 

B. Definition of Localized Orbitals 

We consider the case of a determinantal wave function of 2N electrons 

with N doubly occupied orthonormal orbitals V^N' viz., 

$  = A {  ( f X 2 ' . . . .  < y i J * > < 2 N " 1 )  

(IV-2-1) 
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as determined by a self-consistent-field calculation. Actually, the or­

bitals are not uniquely determined by jS ; any unitary transformation 

between them will leave the wave function invariant and we must say that 

5 is associated with the N-dimensional linear space subtended by ... 

fN-

The electron interaction energy of can be written 

EI = (§| L rT1 || ) = C - X , (IV-2-2) 

i p r • -i C = !AXt~ r .  t —2~J^ljdV2ri2 P(2) 

2EE[fn
2\fm

2] , (IV-2-3) 
n m 

X = -^-1 dvi/dv2 r12 P2U| 2) , 

= % c [fnrjr.ya] • <iv-2-4> 
n m 

where 

p(l|2) = Z <#/n(l) fn(2) , (IV-2-5) 

p(l) = p(l|l) , (IV-2-6) 

[f | g] = fdVl fdV2 f(l) g(2)/r12 . (IV-2-7) 

Since EI depends only upon J , it is of course invariant against unitary 

transformations among the 's. More specifically, however, the density 
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kernel p(l|2) is invariant under such transformations, and so are there­

fore the "Coulomb term" C and the "Exchange term" X, separately. 

Such is not the case however for the sum of the diagonal terms 

DCf) = 2 [Vn2m2] , (IV-2-8) 
n 

which occurs in C as well as in X. It is therefore a meaningful question 

to ask for that orthonormal basis . .X^ in the space spanned by 

y N which maximizes D( ̂  ) i.e., given the basis If 

find a unitary transformation 

X (x) = Z U/ (x) T , (IV-2-9) 
v 

n 
n nV 

such that 

D(70 = Z [Xv 2|XV 2] (IV-2-10) 

is maximum. 

The following remarks can be made regarding the orbitals 

Since D(y/) can obviously be considered as a measure of the "overall 

localization" of the basis set the X-^...XN represent, in the 

given linear space, that orthonormal basis which exhibits "maximum 

localization". They will be called localized orbitals. 

Because of the invariance of C and X under unitary transformations, 

maximization of D implies minimization of 

c = z [A 2|X 2] > (IV-2-11) 

V&1 v u 

and 
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X' = Z . (iv-2-12) 

vAi 

The expression C1 represents the total of all inter-orbital repulsions, 

and the quantity X1 can be considered as the total of the self-energies 

of all overlap-charge-distributions ( . These minimum properties 

indicate that, in going beyond the SCF approximations, one is likely to 

find the smallest correlation correction between different orbitals, if 

one chooses the (X^Xg* • »^)as starting point. 

If it should happen that the minimum X1 vanishes identically, then 

this would mean that these localized orbitals have the properties of 

1,2 
orthogonal Hartree orbitals (as opposed to Hartree-Fock orbitals). 

Thus, the localized orbitals X^X^...X^ are those basis orbitals in the 

self-consistent- field space which approach most closely the behavior 

postulated for the Hartree orbitals. 

The localized orbitals provide a quantitative basis for the qualita-

^As "orthogonal Hartree orbitals" we define those orbitals which min­
imize the energy of a Hartree product of orthogonal orbitals. The result­
ing equations differ from the Hartree equations by having off-diagonal 
Lagrangian multipliers X^j. It can be shown that orbitals which satisfy 
these modified Hartree equations also satisfy the condition of Eq. IV-3-
14, and hence represent the localized orbital basis in their function 
space (which is of course not identical with the Hartree-Fock space). 

^Hartree's functions satisfy the equations which result by discarding 
the off-diagonal Xjj mentioned in the previous footnote. This introduces 
some non-orthogonality. But frequently, the Hartree functions and the 
orthogonal Hartree functions are not too different. Both exhibit local­
ized character. This localized character is entirely lost however, if one 
introduces into the Hartree equations the common additional averaging 
process over the electron-interaction potential. Under these conditions, 
one obtains nonlocalized symmetry orbitals. 
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tive chemical concepts of "localized electrons" and "delocalized elec­

trons" . Since it is always possible to construct a delocalized orbital 

basis from a localized orbital basis by a unitary transformation, it is 

obviously easy to choose many delocalized bases in a given SCF space. 

In order to see to which degree electrons act as localized units, one has 

to determine to which degree the SCF orbitals of maximal localization are 

restricted to certain parts of space. 

C. Determination of the Localized Orbitals 

1. Orbital pair case 

For a pair of orbitals it is not difficult to find the proper 

localization transformation. Thus, letting 

u^(x) = cos y + sin Ylp2(x) 

ug(x) = -sin 7<f^(x) + cos yy/^(x) (IV-3-1) 

we have a general orthogonal transformation of lj/ ̂ (x) and (f/^(x) into 

u^(x) and u^(x). Then 

(uju^uju^ = 1/4 sin22y(A12) + 1/2 sin^yCB^) 

+ cos22 (y/1yz2|y/1y2) , (iv-3-2) 

where 

Ai2 - (Vivyfifz) -1/4 

+ CTzIrp (IV-3-3) 
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and 

*12= (fil Vif 2> - (f Zlflfz) • dV-3-4) 

However, because the exchange energy is invariant, 

(uju2) + (u2u2) + 2(U1U2 U]LU2) = + wlwl) + 

2IV/iV/2) * (IV-3-5) 

This relation holds also for any two orbitals of a set of N orbitals (see 

footnote in next section). Thus, 

D(u) = D(^) + A 2̂ - A 2̂ cos4y + B 2̂ sin4y , (IV-3-6) 

where 

and 

D(u) = (ujup + (u2|u2) (IV-3-7) 

D(Y) = (Vilfi) + (fzlf 2) (IV-3-8) 

Thus, if we define some angle by 

/ 2 21 

sin4oC = B 2̂/ y A 2̂ + B 2̂ (IV-3-9) 

cos4ct = -A12/ Al2 + BU ' (IV-3-10) 

we have 

\/ ? 2 ' 
D(u) = D(f ) + A 2̂ +JfA 2̂ + B 2̂ cos4(y~ot) . (IV-3-11) 

Further, using Eq. IV-3-5 again, we have 
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»7~~5 ô1 
(U 1 UJU 1U 0 )  = - (1/2) A_ - (1/2) V Â7~ + Bf„ . 

JU *.* 4. <- JLZ. • Ltm 1.4. 

(IV-3-13) 

From Eqs. IV-3-9 and IV-3-10 we have 

tan4 — -B^2/A^2 * 

a result which can also be obtained by differentiating Eq. IV-3-2, setting 

the result equal to zero, and y equal to oC . 

When y =e( + rrn/2 for n = 0,1,2,3, etc., it is seen that D(u) is 

maximum and (u^u^u^u^) is minimum. Also when Y =d+ n n/4 for n = 

1,3,5, etc., D(u) is minimum and (uiu2|ulu2) maximum. 

One can take the transformation to the localized orbitals to be Y = 

et, the other angles, for D(u) a maximum, differing from it by correspond 

ing to a change in sign of u^ and/or u^. 

It should be noted that tan4eC is zero for oC = 0, TT/4, etc., so 

that if we take oC =0°, then B^ is zero and D(u) is at an extrema. 

Thus for the extrema 

(u^ugju2) - (u^ugjug) = 0 (IV-3-14) 

2. N-orbitals case 

For the case of three or more orbitals, the use of an analytic 

technique, similar to that used in the preceding section, appears to be 

too complex. Therefore, some iterative technique is implied. One might 

attempt various types of steepest descent methods to "feel" the way to 

that transformation which minimizes the exchange integrals between 
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orbitals. The method which is used here consists of successively 

applying the above described pair transformation to the various pairs 

of orbitals. This iterative procedure is very similar to Jacobi's 

diagonalization procedure, which is known to be one of the fastest 

methods for diagonalization. 

Each stage of the iteration method consists of the following two 

steps. 

Find that pair (among all pairs of which, upon 2x2 

maximization of D will yield the greatest increase in D. According to 

Eq. IV-3-6, this is that pair if ̂  for which 

(IV-3-15) 

is the largest, Ajj and Bjj being defined by Eqs. IV-3-3 and IV-3-4. 

Find the corresponding transformation IV-3-1, and thus two new 

orbitals f j ' which now replace the previous orbitals * 

Writing the total sum in the form 

cm - % i r / i r j ]  +  
n^i, j 

(IV-3-16) 

one recognizes that replacing Y^j i ' will increase 

the last two terms, but leave the first (N - 2) terms 
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I 
unchanged. Thus, each iteration consists of performing that 2x2 

orthogonal transformation which guarantees the maximum increase in the 

total D(l|/). Convergence is achieved, when all %N(N - 1) quantities of 

Eq. IV-3-15 are smaller than the prescribed convergence criterion, e.g., 

the numerical accuracy of the calculation. 

As illustration we apply the procedure to a case which has been 

unaccessible to previous approximate methods, namely the construction of 

localized orbitals from the Is Slater orbital and the 2s Slater orbital 

in oxygen. 

These Slater orbitals are 

The conventional orthogonal orbitals are those obtained by Schmidt 

D. Localization between Is and 2s Orbitals 

(IV-4-1) 

•*"It is also easily seen that the sums 

Z 
n<m 
n,m^ij 

I Vn Vml V„ fj 

and 

*  IV  n f i lVnVi l  +  [ fVf j lW 
nFl> j 

remain invariant. Hence, the change in the sum of all exchange integrals 
is equal to the change in [ y/j | y/. ] alone. 
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orthogonalization, viz., 

(ls°) = Is , 

(2s°) = [(2s) - S (Is)]/ /Ts2* , 

(2s°) = -0.24008(Is) + 1.02842(2s) . (IV-4-2) 

They give rise to the exchange integral 

[ls°2s°|ls°2s°] = 0.0703(e2/a) = 1.91 ev. (IV-4-3) 

If they are chosen as the basis orbitals ( Vi » V 2^ ôr t*ie construction 

of an arbitrary orthogonal basis (u^,u2) according to Eq. IV-3-1, then 

the variation of the exchange integral with the transformation angle y, 

as given by Eq. IV-3-12, becomes (in atomic units, e /a) 

[u^u2|u^u2] = 0.4539 - 0.4401 cos4(y + 7°20.5') . (IV-4-4) 

From this equation follows that the localized orbitals result for 

y =-7°20.5'. Expressed in terms of the original Slater orbitals, they 

become 

Inner orbital = is = = 1.02248(ls) - 0.13142(2s) , 

Outer orbital = os = X2 = -0.110322(ls) + 1.01998(2s) . (IV-4-5) 

Their exchange integral is 

[is os J is os] = 0.0138(e^/a) = 0.376 ev. (IV-4-6) 

so that localization has reduced the exchange integral by more than a 

factor 5. 
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It is of interest that those orthogonal orbitals which result from 

"symmetric orthogonalization", as proposed by P. 0. Lowdin (16), are very 

close to the localized orbitals. In terms of the original Slater orbit­

als, they are 

(lsL) = a(ls) + b(2s) 

(2sL) = b(ls) + a(2s) 

2a = (1 + Sj^ + (1 - sf2 , 

2b = (1 + S)™% - (1 - S)"% . 

Hence 

(lsL) = 1.02129(Is) - 0.12088(2s) , 

(2SL) = -0.12088(Is) + 1.02129(2s) , (IV-4-7) 

which corresponds to a value of y = -6°451 in terms of Eq. IV-4-4. 

Their exchange integral 

[lsL2sL|1sL2sL] = 0.0141(e2/a) = 0.384 ev , (IV-4-8) 

is only 0.008 ev larger than that of the localized orbitals. Since the 

Lowdin orbitals represent that set of orbitals which "differs least", 

in the sense defined by Carlson and Keller (4), from the non-

orthogonal Slater orbitals (Eq. IV-4-1), it is remarkable that the 

latter have a considerably larger exchange integral, namely 

[Is2sIls2s] = 0.1246(e2/a) = 3.39 ev. (IV-4-9) 

Finally, Eq. IV-4-4 shows that minimal localization (maximal 

derealization) is reached for y = 37°39.51, at which point the exchange 
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integral assumes the maximal value 

[u1u2|u1u2]max = 0«8940(e2/a) = 24.3 ev . (IV-4-10) 

E. Discussion 

It can be seen that the low exchange integral for the localized 

orbitals (is), (os) comes about because the Is orbital is somewhat 

contracted towards the nucleus and, more important, because the inner 

loop of the 2s orbital is concomitantly attenuated. In view of this 

r\ O 
observation one is led to expect that, in case of sp, spz or sp hybrid­

ization, the exchange integral between different (2s-2p) hybrid orbitals 

will be further reduced if the (Is) orbital is also included in the 

localization process. For, in that case the (2s-2p) hybrids would get 

some Is admixture which would attenuate all of them in the region where 

they overlap each other. 

As mentioned before, the localized orbitals are those for which 

inter-orbital correlation is expected to be smallest. That it is possible 

to reduce the inter-orbital correlation to a small value is made likely by 

the results found by Allen and Shu11 in Be (2). Their results suggest 

that Watson's very accurate configuration interaction function can be 

closely reproduced from two separate pair functions. The relation to 

localized orbitals is being investigated at present. 

These results have some bearing on the concept of "inner shells" in 

a many-electron atom, where a unitary transformation between the orbitals 

is arbitrary. There is no reason why Schmidt orthogonalization should 

define the various "shells". It seems to us that, within one symmetry, 
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the localized orbitals correspond much more closely to the concept of 

inner and outer shells. 

This definition of inner shells finds further support in the obser­

vation that there seems to be evidence that the localized inner shell 

orbitals (is) of an atom may mix very little with the valence orbitals 

in the molecule. Thus, in an analysis of the HgO calculation of Ellison 

and Shu11 (9) we were led to define certain "valence atomic orbitals" 

from the molecular wave function. The inner valence atomic isv, which 

is seen to be very similar to the inner localized atomic orbital (is) of 

Eq. IV-4-5, was found to mix very little into the valence molecular 

orbitals. This behavior is in strong contrast to that of the Schmidt-

orthogonalized inner shell, i.e. the Slater Is orbital. [The exchange 

integral between lsv and osv is 0.0219(e^/a) = 0.595 ev.] 

While the foregoing conclusions have been made on the basis of the 

oxygen Slater orbitals, we believe that similar results will emerge when 

the Hartree-Fock orbitals are considered. This conjecture is based on a 

comparison of the electron interaction integrals in the two cases. One 

finds (26) (in atomic units, e /a) 

(isv) = 1.02265(ls) - 0.14809(2s) +/v0.05(2po) , 

(osv) = -0.0469143(Is) +.0.843313(2s) +/*0.5(2pcr) , (IV-5-1) 

[IsIs|lsls] 

[ Is Is J 2s2s] 

[ 2s2s|2s2s] 

[Is 2s|Is2s] 

Hartree-Fock 
4.7421 

Slater 
4.8125 

1.1331 1.1334 

0.7974 0.8039 

0.0767 0.0703 
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In particular the similarity in the value of the exchange integrals 

[Is2s|ls2s] makes it likely, that localization of the Hartree-Fock orbit­

als would yield a lowering of the exchange integral similar to that found 

for the Slater orbitals. 

The localization transformation has been applied also to the Is and 

2s (orthogonal) Slater orbitals of Be. This involves a rotation of 

about 5°, and the resulting localized 2s orbital is graphed in Figure 9. 

There we have also graphed the Slater and SCF 2s orbitals for Be. 

F. Localization between 2s, 2px, 2py Orbitals 

From Eq. IV-3-14 it is clear that localization of the atomic orbit­

als 2s, 2px, and 2py will lead to the trigonal hybrids tl, t2, and t3 

tk = (1/3)^ 2s + (2/3)% pk, (IV-6-1) 

where pi, p2, p3 are the three 2p orbitals yielding pairwise the inner 

product 

Jpj(x) pk(x) dV = -1/2 , (j^k) (IV-6-2) 

for example r» 

pi = 2px, 

P2 = -1/2 (2px) + 3/2 (2py) , 

p3 = -1/2 (2px) - 3/2 (2py) . (IV-6-3) 

The orbital triple (2s), (2px), and (2py) presents therefore a convenient 

case with known solutions, where our iteration procedure can be tested. 

A machine program was applied to the orthogonal Slater orbitals of 
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oxygen and the results are exhibited in Figure 8. The following observa­

tions are of interest: 

Although the increasing error in the invariant total exchange energy 

X indicates that, after about fifteen iterations, the calculation is 

becoming unreliable in the sixth decimal, the individual integrals as 

well as the localized orbitals themselves nevertheless improve consistent­

ly up to the thirty-first iteration; 

The improvement in D(7\) due to the last pair transformation is 

always smaller than the total defect in D(X); 

The total defect in D(?v) is always considerably smaller than the 

maximal absolute deviations in the individual integrals; 

The deviations in the individual integrals are always smaller than 

the maximal deviation in the localization criterion B^* 

The last observation is particularly gratifying, if it can be 

assumed to hold generally true. For, in problems where the answer is 

unknown, the quantities Bjj are the only ones which can be calculated to 

test the quality of the localization. It is encouraging that they seem 

to provide an upper bound for the deviations of the individual integrals. 

It is questionable whether the number of iterations found necessary here 

is typical. Our particular case possibly shows a slower than average 

convergence, since the indeterminacy in the p-orbitals may favor evasive 

oscillations from iteration to iteration. 
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Number of 
Iterations n = °° n = 0 n = 3 n = 8 n = 13 n = 18 n = 24 n = 31 

Exact 
Value Deviations from Exact Value after n Pair Transformations 

[ 1 ] 0 .062323 .112615 .001792 .000227 .000055 .000014 .000014 .000003 

[^1^3 1 ^1 ̂3 ] 0 .062323 .112615 .001792 .000227 -.000110 -.000027 -.000007 -.000007 

[^2^-3 1 \a ̂3 1 0 .062323 -.014335 .009597 -.000442 .000055 .000014 -.000007 .000003 

f ̂ 1^1 l^l^l 1 1 .002199 -.198288 .003152 -.000665 .000080 .000020 -.000011 .000004 

[ \s 1 ^2 \s ] 1 .002199 -.111750 -.014757 .000319 -.000163 -.000041 -.000011 -.000011 

[ ̂3 ̂3 1 ^"3 ̂ 3 1 1 .002199 -.111750 -.014757 .000319 .000080 .000020 .000020 .000004 

Bia 0 0 -.055922 .001641 -.000411 .000103 .000000 .000026 

B13 
0 0 -.055922 .001641 -.000000 .000000 .000051 .000000 

CO 

£
 0 0 .000000 .000000 .000411 .000103 .000051 -.000026 

D(X) 3 .006597 -.421789 -.026362 -.000027 -.000003 -.000002 -.000003 -.000003 

X 3 .380538 0 0 .000001 .000002 .000002 .000003 .000004 

igure 8. Results for the trigonal hybridization of the 2s, 2px and 2py Slater orbitals of 
the Oxygen atom. 
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tt1 | 2s) 

(Xa | 2s) 

(X3 I 2s) 

A"D(X) 

0.57735 .42265 .12976 -.00453 +.00056 

0.57735 -.57735 .27735 .00225 -.00113 

0.57735 -.57735 .27735 .00225 .00056 

.00014 

.00028 

.00014 

b 

.00007 

.00007 

.00014 

.00004 

-.00007 

.00004 

Improvement in D(X) due to Last Pair Transformation 

.03954271 .00000965 .00000060 .00000003 .00000001 .00000000 

a Overlap integrals indicating the amount of s-character in the trigonal hybrids and, hence, 
characterizing the basis transformation. 

^ Test parameter determining the interruption of the iterative cycle. 

Figure 8 (Continued) 
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Figure 9. Graphs, along a radial vector, of the best-atom. , 
SCF (— — —), and best-atom localized (-----) 2s orbitals 
for the Be atom. 
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G. Localized Molecular Orbitals 

1. Introduction 

Optimally localized molecular orbitals (LMO's) have been found for a 

number of small diatomic molecules using the method outlined in the 

preceding sections. All these molecules contain only atoms from the first 

two rows of the periodic table. The SCF wave functions used were found 

by Ransil (21). They are of the LCAO-MO (linear combinations of atomic 

orbitals-molecular orbitals) type (22), and minimal basis set functions; 

i.e., usually only enough Slater atomic orbitals from each atom have been 

used as are necessary to describe these atoms in the free state. This 

restriction results in less than exact SCF molecular orbitals, but the 

deviation is not too great as can be seen from Figures 10, 11, and 12, 

in the case of the HF molecule. The basis atomic orbitals are the much 

used Slater Is, 2s1, and 2p orbitals (26). We have Schmidt orthogonalized 

the Slater 2s1 orbital to the Is orbital (which results in no real change 

in the basis set, since the new 2s orbital equals (2s' - S Is)^1-S2), 

P 
where S is the overlap integralj Is 2s1 df between the Slater orbitals). 

The 2s orbital is quite similar to the SCF atomic orbitals of the free 

atom, as can be seen from Figure 9 for the Be atom. 

The localized molecular orbitals were obtained using a machine 

program on the IBM 7094 digital computer. The criteria used to terminate 

the binary transformations was that, if an improvement of more than 10 ® 

in the sum of the diagonal exchange integrals could not be obtained by 

any binary transformation, then the program was terminated for that 
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molecule. This leads to an error in the LCAO coefficients for the LMO's 

-4 
of about 10 for most of the molecules, but the error can become as big 

- 2  
as 10 for some of the large heteronuclear molecules such as LiF. An 

indication of the accuracy of the LCAO coefficients is given by their 

deviations from agreement in the case of, in principle, equal contribu­

tions to equivalent orbitals. 

Generally speaking, the LMO's turn out to be pretty much as 

anticipated qualitatively by earlier authors. One invariably obtains Is 

type LMO's on second row atoms, but not with hydrogen atoms. Also, in 

single bonded molecules (with the exception of the excited state of NH), 

there results a single bond orbital between the two atoms, and various 

lone pair orbitals on them. In multiple bonded molecules (such as N^) 

one obtains "banana" type equivalent bond orbitals. Also if there is 

more than one lone pair orbital on a given atom, they turn out to be 

equivalent. Finally, the orbitals which are of lone pair or inner shell 

type usually have small "negative" contributions from the other atom, 

i.e., they have a node in the bond region. 

With the exception only of Li it is found that the localized Is type 

inner shell orbital is localized from the 2s atomic orbital (which enters 

the various valence LMO's) in about the same manner as it was found to be 

in the oxygen and beryllium atoms in a preceding section. The inner 

shell orbitals, for a given atom, are found to be remarkably similar as 

one goes from molecule to molecule. In some cases this is true also for 

the lone pair orbitals. (It should, of course, be kept in mind that the 

sign of a particular orbital is of no consequence, so that in comparing 
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orbitals one may mentally change the sign of all the expansion coeffi­

cients for a given orbital.) 

In some cases, however, the calculations yield quite interesting . 

results which could not be anticipated without actually carrying out the 

localization process, e.g., the proper distribution between lone pair 

orbitals and bonding orbitals in BF. 

In the following we will first pass briefly through the different 

types of molecules, describing their LMO's and commenting on their 

exchange integrals. (Usually various cases of orbital exponents will not 

be discussed separately, since the results are all very similar.) We 

will then discuss the relation of these orbitals to the valence molecular 

orbitals defined by Ruedenberg (24), and compare the two sets of orbitals 

for the various molecules. 

2. Calculations and discussions of SCF-LCAO-LMO's 

The Figures 14 to 24 list the pertinent numerical results, of the 

localization process, for the various molecules. The exchange integrals 

for both the original SCF MO's and LMO's are given first. They are of 

interest because, in contrast to the coulombic integrals, the off-diagonal 

exchange integrals (which will sometimes be referred to as the exchange 

integrals per se) suffer large relative changes due to localization. The 

transformation matrices connecting the two sets of molecular orbitals are 

given next, which reflect the extent of difference between the two sets 

of MO's. It can be expected that the transformation to localized MO's 

will be achieved by almost the same transformation for the exact SCF MO's. 



www.manaraa.com

134 

Finally, there are given the LCAO expansions for the LMO's in terms of 

the orthogonalized Slater atomic orbitals. They give an idea of the 

forms of the LMO's in space. This conceptual advantage of the minimal 

basis set is largely lost in the case of the longer expensions required 

for the exact SCF orbitals. 

For all the small molecules, the above information is given for 

three sets of Slater orbital exponents: values obtained from Slater's 

rules'*"; values which minimize the energy of the separated atoms; and 

values which minimize the energy of the particular molecule. The atomic 

orbitals having these values are referred to respectively as Slater 

atomic orbitals (SAO), best-atom atomic orbitals (BAO), and best-molecule 

atomic orbitals (BMO). For some of the larger molecules, tables for all 

three cases are not given. Actually very little difference of a qualita­

tive nature exists between the various sets, and, whenever it is 

available, the BMO set is of course the most valuable and correct. 

In the figures the original SCF MO's are denoted by their conven­

tional symbols, which are given also in Ransil's tables (21). The LMO's 

are denoted by the following symbols: 

iA = LMO which is chiefly an inner shell on atom A; 

OA = LMO which is chiefly a a-type lone pair on atom A; 

AtlA 
j?t2A = LMO's which are chiefly trigonal equivalent lone pairs on 
j£t3A atom A; 

boAB = LMO which is a a-type bonding orbital between atoms A 
and B; 

•*"See, for example, p. 368 of Reference 26. 
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btlAB 
bt2AB = LMO's which are chiefly trigonal bonding equivalent orbitals 
bt3AB between atoms A and B (In general polarized "banana bonds"). 

The Slater atomic orbitals on the other hand are denoted by: 

Ao = Is orbital on atom A; 

As = orthogonal 2s orbital on atom A; 

Apcr = 2pa orbital on atom A; 

Apr = 2px orbital on atom A; 

Apir = 2py orbital on atom A. 

The LiH molecule has a localized Is type orbital on the Li atom, and 

a bond orbital extending over both atoms but lying predominantly on the H 

atom. The SCF MO's do not differ greatly from these orbitals, so that 

the molecular orbital transformation is almost an identity transformation. 

Nevertheless, the exchange integral between the two orbitals has been 

reduced by a factor of about four. This is very similar to the situation 

2 ? 
encountered in atoms with the Be Is 2s structure. 

The BH molecule is seen to have a Is type orbital and a lone pair 

type orbital on the B atom. Also there is a bond orbital extending about 

equally over both atoms. The transformation between the MO's sets is 

still close to an identity one, but not nearly so much as in LiH. The 

exchange integrals have been reduced, on the whole, by a factor of about 

five. 

The NH molecule does not have a singlet ground state'. Therefore the 

2 2 4 
excited state la 2a ITT was calculated by Ransil, and is investigated 

here. This leads to a Is type orbital on the nitrogen atom, and three 

equivalent bond orbitals pointing from the N atom toward a circle around 
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the H atom. This occurs because the N atom does not have a a-type 

lone pair for hybridization with the ir orbitals, and serves to emphasize 

that the usual situation of lone pairs and bonding orbitals between atoms 

may be greatly disrupted in going to excited states. The exchange 

integrals are reduced by about a factor of two. 

The HF molecule has a Is and three equivalent lone pair orbitals on 

the F atom. Also there is a bond orbital lying slightly more on the 

fluorine than the hydrogen. The exchange integrals have been reduced, on 

the whole, by a factor of about two. The transformation matrix between 

the two sets of MO's still has somewhat the character of an identity 

transformation, although much less so than in LiH or BH. In Figures 12 

and 13, the values of the HF LMO's, along the bond axis, have been 

graphed. ' 

Turning now to some homonuclear molecules, we see that for the Li2 

molecule we have a localized Is orbital on each of the Li atoms, and a 

bond orbital extending equally over both atoms. It should be noted that 

the Is orbital is quite similar in composition to the Is orbital in LiH. 

The MO transformation is seen to be essentially an identity one for the 

bonding orbital, and a symmetry (45° rotation) one for the Is orbitals. 

1 
The exchange integrals are reduced, on the whole, by a very large factor, 

because this reduction is almost entirely due to the reduction in the 

exchange integral due to the symmetry transformation. This is very large 

because we go from two orbitals la^ and la^ which have very large differ­

ential overlap (overlap of the absolute values), to two orbitals iLi and 

iLi', which have almost no differential overlap. 
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For the Beg molecule, which is not bound and is therefore a 
O 

hypothetical molecule taken with an internuclear distance of 2 A, we have 

essentially a Is and a 2s orbital on each of the atoms. Thus the MO 

transformation matrix is essentially a product of two symmetry trans­

formations , and the reduction in the exchange integrals is again very 

large. The Is orbitals are of a localized character, and the 2s 

orbitals are beginning to develop a surprising amount of contribution 

from the other atom. 

The Ng molecule is seen to have a Is type orbital and a lone pair 

orbital on each of the atoms. Between the two atoms there are three 

equivalent "banana" bond orbitals. The Is orbitals are seen to be of 

localized character, and the lone pair orbitals mainly of 2s atomic 

orbital composition, with enough 2pcr composition to direct them well 

toward the "back" of the N atom. The exchange integrals have been 

reduced, on the whole, by about 85 percent, but a fair amount of this is 

due to symmetry transformations of the lcr^ and lcr^ orbitals into the iN 

and iN1 orbitals, the 2Ug and 2°^ orbitals into the jL crN and,/ a N' orbit­

als, and the 3o"g, liru and 1tt"u orbitals into the "banana" bond orbitals. 

For the Fg molecule, we find three equivalent lone pairs on each 

of the F atoms, and a bond orbital between the two atoms. There are also 

the localized inner shell Is type orbitals on each atom and these are 

extremely similar to the corresponding ones in HF, BF, and LiF. Also the 

lone pairs of the F atom are quite similar to those in HF, but are 

slightly less directed toward the rear of the F atom, in that the per 

contribution to these lone pairs ((BMO) case) is -.1243 as compared to 



www.manaraa.com

138 

-.1982 for the (BMO) case of the HF molecule. The exchange integrals 

have been reduced, on the whole, by about 85 percent, but as with the Ng 

molecule a large share of this is no doubt due to symmetry transforma­

tions. 

The inner shell for the F atom in the (SAO) case is 

lsLMO = -9915 ls " *1303 2s • (IV-7-1) 

It is evident that this inner shell is almost the same in the HF, F^> BF, 

and LiF molecules as it is here. 

The results for the (SAO) case of the BF molecule are particularly 

interesting since they yield a somewhat unexpected result. The usual 

picture would be that of a single bond between the two atoms and three 

lone pairs on the F atom. However, one could also conceive the structure 

to be somewhat similar to that of Ng, since the two molecules are isoelec-

tronic. The actual structure turns out to be intermediate between these 

two extremes, but, somewhat surprisingly, it seems to be considerably 

closer to the Ng structure. Thus, we have a localized Is type orbital 

on both atoms, and three equivalent, but somewhat distorted, "banana" 

bond orbitals. Also while the lone pair orbital on the B atom appears to 

be quite normal, the one on the F atom is seen to have become somewhat 

bonding in character. It appears that the bonding is still mainly due to 

the weakened "banana" bonds, but the F lone pair seems to be coming into 

the bonding to a slight extent. 

This observed intermediate character agrees with the binding energy 

value of 8.5 + .5 ev, which is low compared to the values 9.9 ev for Ng 
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and 11.24 ev for CO, but is high for a single bond value, e.g., 6.0 + 

.5 ev for LiF. 

It should be noted that the lone pair orbital on the B atom is 

similar to the lone pair for the (SAO) case in BH. If we neglect the 

small contributions to these lone pairs from the other atom, and consider 

only their contributions from the B atom, we find that these contributions 

(when each is normalized) have an overlap of .99963. The sum of the 

contributions from the F atom (as measured by the sum of the LCAO coeffi­

cients) is seen to be close to the contribution from the hydrogen atom. 

It should also be noted that the inner shell on the F atom is very 

similar to that on the F atom in the (SAO) case of HF. If we again 

consider only the (normalized) contributions from the F atom, which are 

the only contributions of consequence in this case, we find that they 

have an overlap of .99994. 

The lone pair orbitals on the F atom are not too similar to those 

for the (SAO) case of HF, and the overlap of their normalized components 

from the F atom are only .8589. This no doubt is due to the triple bond 

character of the BF molecule. 

In the (SAO) case of the LiF molecule we have a localized Is type 

orbital on each of the atoms, a a-type lone pair on the F atom, and three 

equivalent "banana" type bonding orbitals between the atoms. The "banana" 

bonding orbitals are strongly polarized toward the F atom. This result is 

somewhat striking, in that one would usually picture the F atom as having 

three equivalent lone pair orbitals pointing toward the back, and a single 

bonding orbital connecting it with the Li atom. However, ir-bonding is 
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apparently quite important in this molecule, at least in terms of the 

present approximate wave function. It is seen that the inner shells of 

both the Li and F atoms are quite similar to those of the same atoms in 

the LiH, Lig, HF, Fg, and BF molecules. 

For the (SAO) case of the CO molecule we have a localized inner 

shell on each of the atoms, and a lone pair on each. Also we have three 

"banana" bond orbitals between the two atoms, which are slightly 

polarized toward the 0 atom. This structure is seen to be about inter­

mediate between those of Ng and BF, with which it is isoelectronic. The 

inner shell of the 0 atom is very similar to that for the isolated 0 atom 

obtained earlier, which, when expressed in terms of the orthogonal Slater 

orbitals, is 

lsLM0 = *9918 18 " *1278 28 1 (IV-7-2) 

3. Comparison of valence molecular orbitals with localized 
molecular orbitals 

The fact that the LMO's usually turn out to be inner shell, lone 

pair, and bond type orbitals, leads one to suspect that they may be quite 

similar to certain valence molecular orbitals proposed by Ruedenberg (24), 

after the latter are transformed to equivalent orbitals where possible. 

The valence molecular orbitals are SCF orbitals defined so as to 

have successively maximum overlap populations (19). Thus, that orbital 

is found which has the maximum overlap population, then an orbital 

orthogonal to the first is found which has the next greatest overlap 

population, and so on. This determines a unique set of SCF orbitals. 

These orbitals are still symmetry orbitals (belong to irreducible 
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representations of the symmetry group of the molecule). They are found 

by diagonalization of the matrix whose elements are 

Pnm = 2 2 ck,n ck,m » (IV-7-3) 
k 

where c^ n is the LCAO coefficient of atomic orbital k in molecular 

orbital n. This is because the non-overlap populations of the MO's are 

defined by 

Pnn = 2 Z °k,n clc,n = 2<1"2 f .̂n .̂n* (IV-7-4) 
k j 

and the extremization of these quantities results from the diagonalization 

of the matrix whose elements are given by Eq. IV-7-3. This explains why 

the valence molecular orbitals are symmetry orbitals, since atomic orbit­

als do not simultaneously enter molecular orbitals of different 

irreducible representation, so that the total matrix of the Pnm's reduces 

to several submatrices corresponding to the different irreducible repre­

sentations. 

In order to compare the VMO's with the LMO's we must hybridize the 

former to equivalent orbitals, wherever the LMO's are equivalent orbitals. 

In Figures 25 and 26 we give these "equivalent VMO's" for a number of the 

molecules discussed in the previous section. Only one case of orbital 

exponents (usually (BMO)) is given for each molecule. This is sufficient 

for the qualitative comparisons which we wish to make with the LMO's of 

Figures 14 to 24. 

In the HF molecule, one obtains an inner shell VMO, a lone pair VMO, 

and a bonding VMO, due to the successive-extremizations of overlap. If 

one now hybridizes the lone pair VMO with the two 2pir orbitals on the F 
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atom, one should obtain orbitals roughly similar to the LMO's for this 

molecule. In Figures 12 and 13 we have graphed the values, along the 

bond axis, of the VMO's and corresponding LMO's for this molecule. The 

two sets of orbitals are seen to correspond fairly well. The inner 

shell orbitals of the two types have an overlap of 1.0000, the lone pair 

orbitals an overlap of .9872, and the bond orbitals an overlap of .9693. 

This is to be compared with the overlap of the inner shell LMO with the 

canonical lc orbital, which is .9872, the overlap of the lone pair LMO 

with the canonical 2<r orbital, which is .8069, and the overlap of the 

bonding LMO with the canonical 3cr orbital, which is .8156. 

For the LiH molecule there is found an inner shell VMO on the Li 

atom and a bond orbital lying mainly on the H atom. This situation is 

similar to the LMO's, but it must be remembered that it is also quite 

similar to that of the original SCF MO's. The overlap of the inner shell 

localized orbitals is .9927, and that of the bond orbitals is .9927. 

This is to be compared with the overlap of the i LMO with the canonical 

1er orbital which is .9975, and the overlap of the b LMO with the canonical 

2c orbital which is .9975. 

The BH molecule has an inner shell VMO, a lone pair VMO, and a 

bonding VMO, as was the case with the LMO's. However it is seen that the 

two sets of localized orbitals here correspond fairly closely, and they 

have overlap integrals of .9925 for the inner shell orbitals, .9831 for 

the lone pair orbitals, and .9937 for the bond orbitals. 

In the NH molecule we have hybridized the bonding VMO with the 2pir 

orbitals, so as to have orbitals which correspond to the LMO's. It is 
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seen that, as with the HF and BH molecules, the correspondence between 

the two sets of orbitals is not too bad. 

The corresponding valence molecular orbitals for Lig are obtained 

by applying a symmetry transformation to the l0"g and lcru orbitals 

obtained from the successive-extremization of overlap populations. The 

correspondence of the inner shells to the LMO ones is not particularly 

striking, but the correspondence of the bonding orbital is not bad. In 

this case the correspondence may be only because these orbitals, in 

either case, do not differ appreciably from the canonical SCF orbitals 

after the lCTg and lcru orbitals of the latter have been transformed into 

equivalent orbitals. 

For the Ng molecule we obtain orbitals corresponding to the LMO's 

after carrying out the proper symmetry transformations on the valence 

molecular orbitals. The correspondence of the two sets of localized 

orbitals is seen to be fairly good, but not complete, especially for the 

inner shells. 

In heteronuclear diatomic molecules (other than the hybrids) we 

cannot use an equivalence transformation to bring the VMO's closer to 

the LMO's. It is therefore difficult to recognize a correspondence be­

tween the two sets of molecular orbitals. This circumstance illustrates 

the difference in significance of the two types of orbitals. 
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Figure 10. Minimal basis set SCF 2a orbital (————) , and exact SCF 2a orbital ( ) , for 
HF, along the bond axis. 
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Figure 11. Minimal basis set SCF 3a orbital (—————), and exact SCF 3cr orbital ( 
(from References 6 and 20), for HF, along the bond axis. 
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Figure 12. Minimal basis set SCF 1er orbital ( ) , exact SCF 1er orbital (from 
References 6 and 20), LMO inner shell , and VMO inner shell ( —), 
for HF, along bond axis. 
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Figure 13. IMO lone pair orbital (————)» VMO lone pair orbital (—----)» LMO bonding orbital 
, and VMO bonding orbital ( ) , for HF, along bond axis. 
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Ict 2a 
1er 1.67016 0.01013 

2a 0.01013 0.48114 

la 2a 
iLi 0.99746 0.07121 

baLiH -0.07121 0.99746 

1er 2a 
la 1.67777 0.00871 

2a 0.00871 0.46787 

la 2a 
iLi 0.99779 0.06644 

baLiH -0.06644 0.99779 

la 2a 
la 1.67068 0.00835 

2a0. 0.00835 0.46668 

la 2a 
iLi 0.99788 0.06501 

LiH(BMO) 

bcrLiH -0.06501 0.99788 

iLi 

bcrLiH 

LiH (SAO) 

iLi 

baLiH 

LiH(BAO) 

iLi baLiH 
iLi 1.68464 0.00268 

baLiH 0.00268 0.48157 

oLi s Li pcrLi oH 
1 .00241 -0.00449 -0.02233 -0.04386 

0 .00979 -0.30243 -0.21039 -0.70254 

iLi baLiH 
iLi 1.69066 0.00213 

baLiH 0.00213 0.46814 

oLi sLi paLi oH 
1 .00217 -0.00539 -0.02048 -0.03955 

0 .01065 -0.31920 -0.23021 -0.68415 

iLi baLiH 
iLi 1.68296 0.00207 

baLiH 0.00207 0.46696 

oLi sLi paLi oH 
1 .00215 -0.00709 -0.01997 -0.03857 iLi 

baLiH 0.01161 -0.31892 -0.22870 -0.68652 

Figure 14. Data for IMO's of LiH: exchange integrals for SCF MO's and IMO's, transformation 
matrix from SCF MO's to IMO's, and LCAO expansions of LMO's. 
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BH(BMO) 

1er 2a 3a - bcrBH iB . jfcrB 
1er 2.91124 0.02286 0 .02234 iB 0.00435 2 .97315 0.00756 
2b 0.02286 0.53855 0 .06011 JZaB 0.01030 0 .00756 0.53801 
2b 0.02234 0,06011 0 .50444 bcrBH 0.60929 0 .00435 0.01030 

1er 2CT 3a oB sB pcrB oH 
iB 0.99260 -0.08955 -0 .08199 iB 0.99491 -0 .09958 0.03124 -0 .01494 
to B 0.10882 0.35659 0 .92790 ArB 0.11176 0 .90638 -0.46229 -0 .18413 
bcrBH -0.05386 -0.92996 0 .36370 baBH -0.00972 -0 .27730 -0.44348 -0 .55833 

BH (SAO) 

1er 2a 3a iB baBH ifcrB 
la 2 .92115 0 .02269 0.02261 iB 2 .98515 0 .00377 0 .00742 
2a 0 .02269 0 .50966 0.06080 ibB 0 .00742 0 .01063 0 .53281 
3b 0 .02261 0 .06080 0.49033 bcrBH 0 .00377 0 .57174 0 .01063 

1er 2a 3b oB sB paB oH 
iB 0 .99242 -0 .08954 -0.08416 iB 0 .99489 -0 .09960 0 .03305 -0 .01297 
ifcrB -0 .11184 -0 .37434 -0.92052 JfcrB •0 .11892 -0 .94686 0 .42748 0 .23005 
bcrBH -0 .05092 -0 .92296 0.38152 bcrBH 0 .00371 -0 .21053 -0 .41255 -0 .61387 

.. TUT fit A 1511 v>AUJ 

1er 2a 3a baBH iB ArB 
1er 2 .90932 0 .02429 0.02224 IB 0 .00337 2 .97664 0 .00757 

2a 0 .02429 0 .50672 0.06493 ±TB 0 .01082 0 .00757 0 .53462 
3a 0 .02224 0 .06493 0.48012 baBH 0 .56429 0 .00337 0 .01082 

1er 2a 3b oB sB paB oH 
iB 0 .99202 -0 .09316 -0.08496 iB 0 .99458 -0 .10267 0 .03549 -0 .01557 

ArB 0 .11502 0 .39260 0.91249 JcrB 0 .12077 0 .92804 -0 .44343 -0 .19610 
bcrBH -0 .05165 -0 .91498 0.40018 bcrBH 0 .00167 -0 .21601 -0 .41649 -0 .60253 

Figure 15. Data for IMO's of BH: exchange integrals for SCF MO's and IMO's, transformation 
matrix from SCF MO's to IMO's, and LCAO expansions of LMO's. 
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NH(BMO) 
to 2a Itt Itt btlNH iN bt2NH bt3NH 

1er 4. 14963 0. 05 L82 0 .01604 0. 01604 btlNH 0.76279 0.01159 0 .05100 0. 05099 
2a 0.05 182 0. 65260 0 .11802 0. 11802 iN 0.01159 4.23015 0 .01159 0. 01159 
Itt 0.01604 0-. 11802 0 .68884 0. 03712 bt2NH 0.05100 0.01159 0 .76279 0. 05100 
Itt 0.01604 0. 11602 0 .03712 0. 68884 bt3NH 0.05099 0.01159 0 .05100 0. 762 80 

1er 2a In Itt 
btlNH 0.06945 -0 . 57318 -0 .57985 -0. 57482 

iN -0.99274 -0. 1203 1 0 .00001 0. 00001 

bt2NH-0.06947 0. 57311 0 .20792 -0. 78961 

bt3NH-0.06947 0. 57318 -0 .78775 0. 21471 

oN sN pcrN pnN pttn oH 
btlNH 0.05720 0. 48057 0 .08061 -0. 57985 -0.57482 0. 15260 
iN —0.99536 0. 08794 0 .01621 0. 00001 0.00001 0. 03509 
bt2NH-0.05722 -0 . 4 8 C 5 2 -0 .08060 0. 20792 -0.78961 -0. 15258 
bt3NH-0.05722 -0. 48057 -0 .08061 -0. 78775 0.21471 -0. 15260 

Figure 16. Data for IMO's of NH: exchange integrals for SCF MO's and LMO's, transformation 
matrix from SCF MO's to IMO's, and LCAO expansions of IMO's. 
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HF fBMO) 
Itt 1a 2a 3a Itt Itt 

la 5. 38354 0.08022 0.02774 0.02826 0.02826 
2a 0. ,08022 0.86392 0.16163 0.17928 0. 17928 
3cr 0. 02774 0.16163 0.80921 0.04991 0.04991 
Itt 0, ,02826 0.17928 0.04991 0.97715 0.05266 
Itt 0, ,02826 0.17928 0.04991 1 0-05266 0.97715 

ItlF lt2F iF baHF lt3F 
ItlF 1. 11470 0.07776 0.01932 -0.05534 0.07775 
it2F 0. 07776 1.11468 0.01932 0.05534 0.07776 
iF 0. 01932 0.01932 5.52664 0.01286 0.01932 
bcrHF 0. 05534 0.05534 0.01286 0.87429 0.05534 
4t3F 0, 07775 0.07776 0.01932 0.05534 1.11472 

1er 2a. 3a Itt Itt 
ItlF 0. 07903- -0. 46531 0.33258 0.58925 -0.56516 
lt2F 0. 07903 -0. 46525 0.33237 0.19498 0.79298 
iF --0. 98981 -0. 13431 0.04731 0.00001 0.00002 
bcrHF 0. 03923 -0. 57657 -0.81610 -0.00006 -0.00011 

ft
 
4
 

0. 07903 -0. 46535 0.33265 -0.78407 -0.22754 

oF sF paF prrF pfrF oH 

itlF 0. 07826 0. 56282 -0.19437 0.58925 —0.56516 -0.10042 
£t2F 0. 07825 0. 56268 -0.19423 0.19498 0.79298 -0.10032 
iF --0. 99124 0. 12993 -0.02358 0.00001 0.00002 -0.00049 
bcrHF 0. G1025 0. 19241 0.63284 -0.00006 -0.00011 0.50967 

ft
 

0. 07826 0. 56289 -0.19443 -0.78407 -0.22754 -0.10045 

Figure 17. Data for IMO's of HF: exchange integrals for SCF MO's 
matrix from SCF MO's to IMO's, and LCAO expansions of 

and IMO's, transformation 
IMO's. 
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l o r  2a 
la 5. 40509 0 .  08512 
2a 0 .  08512 0 .  86759 
3a 0 .  02717 0 .  15027 
In 0 .  03226 0 .  18316 
In 0 .  03226 0 .  18316 

baHF ItlF 

baHF 0 .  78102 0 .  05395 
ItlF 0 .  05395 1 .  15260 
lt2F 0 .  05395 0 .  07907 
lt3F 0 .  05395 0 .  07907 
iF 0 .  01083 0 .  02122 

la 2a 
bcrHF - 0 .  03324 0 .  55411 
itlF 0 .  08410 -0. 47380 
it2F - 0 .  08404 0 .  47381 
it3F 0 .  08408 -0. 47384 
iF 0 .  98879 0 .  13949 

oF sF 
bcrHF 0 .  00228 -0. 12132 
itlF 0 .  08272 0 .  57642 
it2F - 0 .  08266 -0. 57645 
it3F 0 .  08271 0 .  57648 
iF 0 .  99048 - 0 .  13509 

Figure 17 (Continued) 

HF (SAO) 

3a 
0.02717 
0.15027 
0.74594 
0.04921 
0.04921 

Itt 
0.03226 
0.18316 
0.04921 
1.01766 
0.05484 

Itt 
0.03226 
0.18316 
0.04921 
0.05484 
1.01766 

lt2F 
0.05395 
0.07907 
1.15259 
0.07907 
0.02122 

3a 
0.83177 
0.31896 
0.31902 
0.31903 
0.05342 

Per F 
0.62171 
0.17595 
0.17599 
0.17599 
0.02645 

lt3F 

0.05395 
0.07907 
0.07907 
1.15262 
0.02122 

Itt 
0.00002 
0.20044 
0.78570 
0.58525 
-0.00003 

prrF 
0.00002 
0.20044 
0.78570 
0.58525 
-0.00003 

iF 

0.01083 
0.02122 
0.02122 
0.02122 
5.56138 

Itt 
-0.00004 
-0.79153 
-0.22215 
0.56932 
0.00003 

pfrF 
-0.00004 
-0.79153 
-0.22215 
0.56932 
0.00003 

-0.56805 
-0.10806 
0.10809 
-0.10809 
0.00382 
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HF(BAO) 

la 2a 3a 
1er 5. 38117 0 .08131 0 .02566 
2cr 0. 08131 0 .86483 0 .14964 
3a 0. 02566 0 .14964 0 .75034 
Itt 0. 03039 0 .18239 0 .04873 
iff 0. 03039 0 . 18239 0 .04873 

baHF iF itlF 
baHF 0. 79237 0 .01095 0 .05543 
iF 0. 01095 5 .52754 0 .02029 
it IF 0. 05543 0 .02029 1 .13193 
it2F 0. 05543 0 .02029 0 .07786 
£t3F 0. 05543 0 .02029 0 .07787 

la 2a 3a 
baHF 0. 03466 -0 .55658 -0 .83007 
iF 0. 98948 0 .13585 -0 .04977 
itlF -0. 08110 0 .47320 -0 .32067 
it2F 0. 08108 -0 .47321 0 .32068 
£t3F 0. 08111 -0 .47320 0 .32068 

oF sF paF 
bcrHF 0. 00125 0 . 14227 0 .64006 
iF 0. 99072 -0 . 13380 0 .02389 
£tlF -0. 08139 -0 .57584 0 .17971 
£t2F 0. 08136 0 .57586 -0 .17972 
£t3F 0. 08139 0 .57585 -0 .17972 

Figure 17 (Continued) 

In 
0.03039 
0.18239 
0.04873 
0.99801 
0.05378 

it2F 
0.05543 
0.02029 
0.07786 
1.13193 
0.07786 

Itt 
0.00001 
0.00002 
0.40183 
0.41463 
0.81646 

prrF 
0.00001 
0.00002 
0.40183 
0.41463 
0.81646 

Itt 
0.03039 
0.18239 
0.04873 
0.05378 
0.99801 

lt3F 
0.05543 
0.02029 
0.07787 
0.07786 
1.13193 

Itt 
-0.00000 
-0.00002 
-0.71078 
-0.70338 
-0.00738 

pfrF 
-0.00000 
-0.00002 
-0.71078 
-0.70338 
-0.00738 

0.53530 
0.00440 
0.10919 

-0.10920 
-0.10920 
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Li2(BMO) 

S 
lag 

0.93489 
0.00960 
0.73719 

la g 
iLi -0.70323 
iLi' -0.70323 
baLiLi'-0.10461 

oLi 
iLi -1.00225 
iLi' 0.00013 
baLiLi'-0.01505 

2ag 
0.00960 
0.22939 
0.00959 

2a g 
0.07395 
0.07398 
-0.99451 

sLi 
0.01749 
0.04668 
-0.52106 

lau 
0.73719 
0.00959 
0.93547 

1ctu 

-0.70711 
0.70711 
0.00002 

paLi 
0.00599 
0.01046 
-0.11379 

iLi 
iLi 1.68710 
iLi' 0.00004 
baLiLi' 0.00205 

oLi ' 
0.00013 
-1.00225 
-0.01508 

sLi ' 
0.04667 
0.01750 
-0.52106 

iLi' 
0.00004 
1.68710 
0.00205 

paLi 1 

0.01045 
0.00600 
-0.11379 

baLiLi' 
0.00205 
0.00205 
0.23000 

la 
2a 
la 

g 

u 

lag 
0.93751 
0.01028 
0.73940 

lag 
iLi -0.70294 
iLi' -0.70294 
baLiLi'-0.10842 

oLi 
iLi -1.00353 
iLi' 0.00128 
baLiLi'-0.01516 

2ag 
0.01028 
0.23286 
0.01026 

2ag 
0.07664 
0.07668 
-0.99411 

sLi 
0.00939 
0.05557 
-0.51672 

lau 
0.73940 
0.01026 
0.93738 

lau 
-0.70711 
0.70711 
0.00003 

paLi 
0.00055 
0.01668 
-0.11851 

Li2(SA0) 

iLi 
iLi 1.69277 
iLi* 0.00005 
baLiLi * 0.00216 

oLi1 

0.00128 
-1.00353 
-0.01521 

sLi' 
0.05555 
0.00941 
-0.51672 

iLi' 
0.00005 
1.69277 
0.00216 

paLi ' 
0.01667 
0.00056 
-0.11851 

baLiLi' 
0.00216 
0.00216 
0.23338 

Figure 18. Data for IMO's of Lig: exchange integrals for SCF MO's and LMO's, transformation 
matrix from SCF MO's to IMO's, and LCAO expansions of IMO's. 
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lag 
le g 0.93401 
2a& 0.00971 
lau 0.73599 

lag 
iLi -0.70318 
iLi1 -0.70318 
baLiLi'-0.10526 

oLi 
iLi -1.00344 
iLi' 0.00104 
baLiLi'-0.01317 

Li2(BA0) 

iLi 
iLi 1.68496 
iLi1 0.00004 
baLiLi' 0.00208 

2ag 
0.00971 
0.23019 
0.00969 

2ag 
0.07441 
0.07445 
-0.99445 

sLi 
0.01098 
0.05287 
-0.51292 

lau 
0.73599 
0.00969 
0.93406 

lau 
-0.70711 
0,70711 
0.00003 

paLi 
0.00140 
0.01593 
-0.12308 

oLi 1 

0.00104 
-1.00344 
-0.01321 

sLi 1 

0.05285 
0.01100 
-0.51292 

Figure 18 (Continued) 

iLi' 
0.00004 
1.68495 
0.00208 

baLiLi1 

0.00208 
0.00208 
0.23074 

paLi ' 
0.01592 
0.00140 
-0.12308 
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Figure 19. Data for IMO's of Beg: exchange integrals for SCF MO1s and IMO's, transformation 
matrix from SCF MO's to IMO's, and LCAO expansions of IMO's. 
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Be2(BMO)-
lag 2crg lau 2au -fcrBe ' .fcrBe iBe iBe ' 

lcrg 1.27804 0 .01494 1.01334 0.01408 iBe 0.00097 0.00484 2 .33628 0 .00003 
^g 0.01494 0 .35523 0.01487 0.04318 iBe' 0.00484 0.00097 0.00003 2 .33629 
1CTU 1.01334 0.01487 1.27800 0.01416 .fcrBe 0. ,02421 0.33747 0 .00484 0 .00097 
2ctu 0.01408 0 .04318 0.01416 0.27882 .fcrBe' 0.33747 0.02421 0 .00097 0.00484 

lag 2ag lau 2au 
iBe 0.70214 -0, .08366 0.70258 0.07991 
iBe 1 0.70214 -0, .08366 -0.70258 -0.07991 
.fcrBe -0.08366 -0 .70214 -0.07991 0.70258 
.fcrBe 1 0.08366 0, .70214 -0.07991 0.70258 

oBe sBe pcrBe oBe 1 sBe 1 pcrBe 1 

iBe 0.99573 -0, .09645 0.00332 0.00539 0.02136 -0.02862. 
iBe' 0.00539 0, ,02136 -0.02862 0.99573 -0.09645 0.00332 
fa Be -0.10165 -0, ,99351 -0.01329 0.05976 0.26995 -0.21395 
-fcrBe' -0.05976 -0, ,26996 0.21395 0.10165 0.99351 0.01329 

"D zs 
2 

lag 2ag lau 2au .fcrBe1 ±rBe iBe' iBe 
la g 1.28202 0. ,01562 1.01683 0.01423 iBe 0.00080 0.00497 0, ,00003 2, ,34507 
2cjg 0.01562 0. 35622 0.01554 0.04371 iBe' 0.00497 0.00080 2, .34508 0, ,00003 
Ictu 1.01683 0. 01554 1.28104 0.01429 .fcrBe 0. 02456 0.33800 0. ,00080 0. ,00497 

0.01423 0. 04371 0.01429 0.2787 .ferBe' 0. 33801 0.02456 0, ,00497 0. ,00080 

lag 2ag lau 2ctu 
iBe 0.70187 -0. 08590 -0.70250 0.08063 
iBe' 0.70187 -0. 08590 0.70250 -0.08062 
.fcrBe -0.08590 -0. 70187 0.08062 0.70250 
itrBe 1 0.08590 0. 70187 0.08063 0.70250 

oBe sBe paBe oBe 1 sBe 1 pcrBe 1 

iBe 0.99756 -0. 08590 0.01007 0.00382 0.01079 -0.03632 
iBe ' 0.00384 0. ,01079 -0.03632 0.99756 -0.08590 0.01007 
AjBe .-0.09186 -0. 93541 0.01834 0.05112 0.21960 -0.24835 
iaBe* -0.05112 -0, ,21960 0.24835 0.09186 0.93541 -0.01834 
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hjg 1.27816 
23-k 0.01478 
lcrj 1.01312 
2ctu 0.01326 

lag 
iBe -0.70219 
iBe' 0.70219 
iBe -0.08327 
IBe' 0.08328 

oBe 
iBe -0.99762 
iBe' 0.00401 
iBe -0.09025 
ibe1 -0.05339 

2ag lcru 
01478 1 .01312 
35299 0 .01471 
01471 1 .27747 
04206 0 .01331 

2ag 1ctu 
08328 -0 .70283 
08327 -0 .70283 
70219 -0 .07766 
70219 -0 .07765 

sBe pcrBe 
08518 -0 .00840 
01195 -0 .03463 
94161 0 .01021 
23262 0 .24765 

0 
0 
0 
0 

0 
-0 
-0 
0 

0 
0 
-0 
-0 

Figure 19 (Continued) 

Be2(BA0) 

2CTU iBe .fcrBe As Be ' iBe • 
0.01326 iBe 2 .33450 0. 00478 0 .00076 0 .00002 
0.04206 iBe1 0 .00002 0. 00076 0 .00478 2 .33451 
0.01331 .fcrBe 0 .00478 0. 33269 0 .02442 0 .00076 
0.27434 .fcrBe' 0 .00076 0. 02442 0 .33269 0 .00478 

2au 
-0.07765 
-0.07766 
0.70283 
0.70283 

oBe' sBe1 pa-Be' 
-0.00405 -0.01195 0.03463 
0.99762 -0.08518 0.00840 
0.05339 0.23262 -0.24765 
0.09025 0.94161 -0.01021 
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N2(BMO) 

tog 
2crg 
3cjg 
toy 
2CTU 
lrru 
lftu 

tog 
2.31485 
0.03182 
0.01971 
1.83095 
0.03178 
0.00928 
0.00928 

%?g 
0.03182 
0.76061 
0.05621 
0.03147 
0.05145 
0. 10227 
0.10227 

3ag 
0.01971 
0.05621 
0.62251 
0.01848 
0.22994 
0.02918 
0.02918 

tou 
83095 
03147 
,01848 
31480 
,03203 
00879 
,00879 

2CTU 
0.03178 
0.05145 
0.22994 
0.03203 
0.55583 
0.05099 
0.05099 

1ttu 
0.00928 
0.10227 
0.02918 
0.00879 
0.05099 
0.58102 
0.02390 

lTTu 
0.00928 
0.10227 
0.02918 
0.00879 
0.05099 
0.02390 
0.58102 

iN btlNN' bt2NN' &rN' iN' ArN bt3NN' 
iN 4.24785 0. 00761 0 .00761 0. 00153 0. 00004 0 .01473 0 .00761 
btlNN1 0:00761 0. 71861 0 .04817 0. 03856 0. 00761 0 .03856 0 .04817 
bt2NN' Oi 00761 0. 04817 0 .71863 0. 03856 0. 00761 .0 .03856 0 .04817 
ArN' 0.00153 0. 03856 0 .03856 - 0. 84228 0. 01473 0 .00189 0 .03856 
iN' 0.00004 0. 00761 0 .00761 0. 01473 4. 24785 0 .00153 0 .00761 
±rN 0.01473 0. 03856 0 .03856 0. 00189 0. 00153 0 .84227 0 .03856 
bt3NN' 0.00761 0. 04817 0 .04817 0. 03856 0. 00761 0 .03856 0 .71863 

iN 
btlNN' 
bt2NN' 
AjN' 
iN' 
ArN 
bt3NN* 

tog 
-0.70027 
0.06015 

-0106013 
0.06475 
0.70028 
0.06473 

-0.06011 

2iJg 
0.08794 

Figure 20. 

0.55377 
-0.55382 
0.17952 

-0.0879,0 
0. 17951 

-0. 5538.2 
Data for IMO's of Ng 
matrix from SCF MO's 

3ct8 
0.04340 

-0.15170 
0.15173 
0.68086 

-0.04341 
0.68088 
0.15176 

: exchange 
to IMO's, 

tou 
-0.70133 

0.00002 
-0.00004 
-0.09021 
-0.70132 
0.09021 
-0.00000 

integrals for 

%?u 
0.09020 0. 
0.00000 -0. 
-0.00000 -0. 
-0.70134 0. 
0.09022 0. 
0.70132 -0. 
-0.00000 0. 
SCF MO's and IMO 

lrru 
00002 
38420 
81602 
00000 
00001 
00000 
43185 

lTTu 
0.00003 
0.72049 
0.02749 

-0.00002 
-0.00001 
-0.00003 
0.69292 

s, transformation 
and LCAO expansions of IMO's. 
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N2(BMO) 

oN sN pcrN 
iN -0. 99 353 0.11366 -0 .02993 
btlNN1 0. 00987 0.20851 0 .22637 
bt2NN* -0. 00987 -0.20852 -0 .22640 
AjN' -0. 02906 -0.21166 -0 .19128 
iN' 0. 00371 0.00742 -0 .01994 
±rN 0. 12726 0.89194 -0 .51631 
bt3NN* -0. 00982 -0.20851 -0 .22642 

oN' sN» pcrN' 
iN -0. 00369 -0. 00739 0 .01996 
btlNN' 0. 00984 0. 20850 0 .22637 
bt2NN' -Ô. 00982 -0. 20851 -0 .22641 
JJN' 0. 12729 0. 89195 -rO .51630 
iN' 0. 99353 -0. 11367 0 .02996 
&rN -0. 02907 -0. 21164 -0 .19130 
bt3NN' -0. 00982 -0. 20850 -0 .22642 

Figure 20 (Continued) 

prrN 
0.00001 
-0.23874 
-0.50706 
0.00000 
0.00001 
-0.00000 
0.26835 

prrN 
0.00002 
0.44770 
0.01708 

-0.00001 
-0.00001 
-0.00002 
0.43057 

o\ 

prrN' 
0.00001 
-0.23874 
-0.50706 
0.00000 
0.00001 
-0.00000 
0.26835 

pfrN' 
0.00002 
0.44770 
0.01708 

-0.00001 
-0.00001 
-0.00002 
0.43057 
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E, (BMO) 
< lrr~ 3o> Icru 2cr« 

JtUF 0.05665 0.35529 -0 .19294 0.06036 -0. ,40376 
£tve' 0.05666 0. ,35529 -0 .19295 -0.06034 0. ,40375 
it2F' -0.05669 -0. ,35534 0 .19267 0.06036 —0. ,40381 
it3F' -0.05665 — 0. ,35530 0 .19298 0.06033 -0. 40377 
iF -0.69984 0. 09781 -0 .02539 -0.69936 -0. 10449 
it2F -0.05666 -0. 35528 0 .19298 -0.06032 0. 40378 
IF' -0.69986 0. 09784 -0 .02537 0.69933 0. 10452 
bcrFF' 0.03413 0. 47268 0 .88057 -0.00000 —o. 00012 
it3F -0.05665 —0• 35532 0 .19298 -0.06030 0. 40370 

Ittu lTTU lTTg lTTg 
itlF 0.41464 -0. 40176 0 .41463 -0.40176 
itlF' -0.19041 -0. 54506 0 .19039 0.54505 

£t2F' -0.56733 -0. 10765 0 .56715 0.10758 

£t3F' 0.37681 -0. 43741 -0 .37680 0.43742 

iF 0.00003 —o. 00000 0 .00001 -0.00001 

£t2F -0.14060 -0. 55995 -0 .14061 -0.55996 

iF' 0.00001 0. 00001 -0 .00004 0.00002 

IxjFF' -0.00017 -0. 00000 0 .00016 0.00004 

£t3F 0.55515 0. 15820 0 .55535 0.15824 

oF sF pcrF prrF pfrF 

£tXF 0.07776 0. 56426 -0 .12446 0.58693 -0. 56871 

£tXE' -0.00426 -0. 03238 -0 .06616 0.00670 0. 01919 

£tZF' 0.00425 0. 03244 0 .06596 0.01986 0. 00375 

it3F' 0.00426 0. 03238 0 .06618 -0.01327 0. 01541 

iF -0.99082 0. 13436 -0 .01673 0.00002 —o. 00001 

£tZF -0.07774 -0. 56429 0 .12449 -0.19903 -0. 79264 

iF' -0.00092 -0. 00791 0 .00038 -0.00002 0. 00002 

baFF' 0.01401 0. 15077 0 .60980 -0.00001 0. 00002 

£t3F -0.07772 -0. 56426 0 .12449 0.78598 0. 22397 

oF' sF' pcrF' prrF' prrF' 
£tU? -0.00428 -0. 03239 -o, .06615 -0.01460 0. 01415 
M?' 0.07776 Oo 56426 -0, .12447 -0.26952 -0. 77154 
it2F' -0.07779 -0. 56429 0, .12429 -0.80294 -0. 15233 
it3F' -0.07774 -0. 56429 0. .12449 0.53338 -0. 61918 
iF -0.00088 -0. 00791 0. .00037 0.00001' 0. 00000 

£t2F 0.00425 0. 03240 0, .06617 0.00496 0. 01973 
iF' -0.99081 0. 13439 -0. .01672 0.00004 -0. 00001 

baFF* 0.01401 0. 15060 0. .60982 -0.00024 —0. 00003 
it3F 0.00424 0. 0323? 0. ,06618 -0.01970 -0. 00560 

Figure 21. Data for IMO's of Fg: exchange integrals for SCF MO's and 
IMO's, transformation matrix from SCF MO's to IMO's, and 
LCAO expansions of IMO's. 
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F2(BMO) 

tog 
2o*g 

i0U 
2uu 
lrru 

lTTu 
lTTg 
lTTg 

2. 
Xcrg 
87886 0. 

2o-ft 
04144 0.01^40 2. 

lau 
50504 0. 

2ctu 
04827 

0. 04144 0. 67447 0.10895 0. 04140 0. 24456 

0. 01440 0. 10895 0.67341 0. 01416 0. 13411 

2. 50504 0. 04140 0.01416 2. 87755 0. 04823 

0. 04827 0. 24456 0.13411 0. 04823 0. 63743 

0. 01494 0. 10264 0.03012 0. 01484 0. 09191 

0. 01494 0. 10264 0.03012 0. 01484 0. 09191 

0. 01616 0. 08435 0.02906 0. 01638 0. 10844 

0. 01616 0. 08435 0.02906 0. 01638 0. 10844 

lag 
2Ug 
3b» 
1ctu 
2ctu 
1ttu 
1TTU 
lTTg 
ltlg 

lTTU lfru 
.0lll6 

lffg 
0. 01494 0. 01494 0 .0lll6 0.01616 

0. 10264 0. 10264 0 .08435 0.08435 

0. 03012 0. 03012 0 .02906 0.02906 

0. 01484 0. 01484 0 .01638 0.01638 

0. 09191 0. 09191 0 .10844 0.10844 

0. 67153 0. 02675 0 .32717 0.02663 

0. 02675 0. 67153 0 .02663 0.32717 

0. 32717 0. 02663 0 .68838 0.02872 

0. 02663 0. 32717 0 .02872 0.68838 

itlF itlF' it2F' it3F' iF 

itlF 1. 13968 0. 00064 0 .00064 0. 00096 0. 02051 

ItlF' . 0. 00064 1. 13968 0 .07502 0. 07502 0. 00012 

it2F' 0. 00064 0. 07502 1 .13972 0. 07502 0. 00012 

it3F' 0. 00096 0. 07502 0 .07502 1. 13968 0. 00012 

iF 0. 02051 0. 00012 0 .00012 0. 00012 5. 53074 

£t2F 0. 07502 0. 00096 0 .00063 0. 00064 0. 02051 

iF' 0. 00012 0. 02051 0 .02051 0. 02051 0. 00000 

fyrFF' 0. 04512 0. 04512 0 .04511 0. 04512 0. 00854 

it3E 0. 07502 0. 00064 0 .00096 0. 00064 0. 02051 

£tZF iF' ba-FF' £t3F 

itlF 0. 07502 0. 00012 0 .04512 0. 07502 

MF1 0. 00096 0. 02051 0 .04512 0. 00064 

it2F1 0. 00063 0. 02051 0 .04511 0. 00096 

it3F' 0. 00064 0. 02051 0 .04512 0. 00064 

iF 0. 02051 0. 00000 0 .00854 0. 02051 

it2F 1. 13968 0. 00012 0 .04512 0. 07502 

iF' 0. 00012 5. 53074 0 .00854 0. 00012 

baFF' 0. 04512 0. 00854 0 .78776 0. 04511 

it3F 0. 07502 0. 00012 0 .04511 1. 13968 

Figure 21 (Continued) 
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Figure 22. Data for LMO's of BF: exchange integrals for SCF MO's and IMO's, transformation 
matrix from SCF MO's to LMO's, and LCAO expansions of IMO's. 
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la 
2a 
3Cr 
4a 
5a 
Itt 
Itt 

la 
5.40393 
0.00000 
0.08500 
0.03101 
0.00308 
0.02665 
0.02665 

2a 
00000 
92115 

i 00379 
01102 

0.02962 
0.00143 
0.00143 

BF(SAO) 

0. 
2 ,  
0. 
0, 

3a 
0.08500 
0.0037V 
0.88095 
0.15662 
0.01612 
0.16722 
0.16722 

4a 
0.03101 
0 . 0 1 1 0 2  
0.15662 
0.86718 
0.03975 
0.05076 
0.05076 

5a 
0.00308 
0.02962 
0.01612 
0.03975 
0.51067 
0.01058 
0.01058 

Itt 
0.02665 
0.00143 
0.16722 
0.05076 
0.01058 
0.85406 
0.04240 

Iff 
0.02665 
0.00143 
0.16722 
0.05076 
0.01058 
0.04240 
0.85406 

ÂrB J&j F iF btlBF bt2BF iB bt3BF 
jgaB 0. 52289 0. 00234 0 .00032 0. 00856 0. 00855 0. 00740 0. 00855 
SaF 0. 00234 1. 08913. 0 .01904 0. 07480 0. 07519 0. 00110 0. 07504 
iF 0. 00032 0. 01904 5 .55570 0. 01792 0. 01799 0. 00002 0. 01797 
btlBF 0. 00356 0. 07480 0 .01792 0. 97143 0. 06795 0. 00134 0. 06790 
bt2BF 0, 00855 0. 07519 0 .01799 0. 06795 0. 97287 0. 00128 0. 06802 
iB 0. 00740 0. 00110 0 .00002 0. 00134 0. 00128 2. 98574 0. 00130 
bt3BF 0. 00855 0. 07504 0 .01797 0. 06790 0. 06802 0. 00130 0. 9 7235 

AtB 
AtF 
iF 
btlBF 
bt2BF 
iB 
bt3BF 

la 
0.00808 

-0.09031 
0.93933 

-0.06536 
0 . 0 6 6 1 8  
0.00045 

-0.06592 

2a 
0. 11468 
-0.02078 
0.00080 
0.02129 
-0 ; 01980 
0.99255 
0.02034 

3a 
•0.07184 
•0.364 2;j 
•0. 13840 
-0.53285 
0.52713 
0.0335:1 
-0.52923 

4a 
-0.22097 
0.90796 
0.04461 
-0.22043 
0.18432 
0.05696 
-0. 19741 

5a 
-0.96531 
-0. 18387 
0.00846 
0.09186 
-0.08335 
0-10233 
0.08642 

lrr 
0.00020 
•0.01999 
0 .00006  
-0.79833 
-0.29281 
0.00007 
0.52586 

Itt 
•0.U0013 
0.01174 
•0.00000 
0.13032 
0.76857 
-0.00003 
0.62624 
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BF(SAO) 
oB sB pcrB prrB pfrB 

ArB 0. 11081 0. 92966 -0. 38979 -0. 00006 0. 00004 
JTF -0. 00071 -0. 12053 -0. 21110 0. 00590 -0. 00347 
iF -0. 00257 -0. 00478 0. 01379 -0. 00002 0. 00000 
btlBF -0. 00901 0. 05186 0. 13128 0. 23576 -0. 03848 
bt2BF 0. 00888 -0. 04 605 -0. 12043 0. 08647 -0. 22697 
iB 0. 99510 -0. 09760 0. 03712 -0. 00002 0. 00001 
bt3BF -0. 00893 0. 04817 0. 12436 -0. 15529 -0. 18494 

oF sF, pcrF prrF pfrF 
±rB -0. 01777 -0. 10908 -0. 08430 -0. 00018 0. 00012 

AT F 0. 10113 . 0. 67053 -0 • 75079 0. 01804 -0. 01060 

iF -0. 99185 0. 12597 -0. 01993 -0. 00005 0. 00000 
btlBF 0. 04871 0. 40239 0. 27263 0. 72054 -0. 11762 
bt2BF -0. 05041 -0. 41070 -0. 23993 0. 26428 -0. 69368 
iB 0. 00091 -0. 00115 -0. 01982 -0. 00006 0. 00003 
bt3BF 0. 04983 0. 40771 0. 25179 -0. 47463 -0. 56522 

Figure 22 (Continued) 
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Figure 23. Data for IMO's of LiF: exchange integrals for SCF MO*s and LMO's, transformation 
matrix from SCF MO's to IMO's, and LCAO expansions of LMO's, 
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LiF (SAO) 

la 
2 a r  
3cr 
% 
Itt 
lft 

la 
5.40531 
0 . 0 0 0 1 0  
0.09164 
0.03181 
0.02574 
0.02574 

2a 
0.C0010 
1.66911 
0.00624 
0.00605 
0.00117 
0.00117 

3a 
0.09164 
0.00624 
0.88899 
0.18774 
0.16435 
0.16435 

4a 
0.03181 
0.00605 
0. 18774 
0.98702 
0.04593 
0.04593 

Itt 
0.02574 
0.00117 
0.16435 
0.04593 
0.78356 
0.03897 

Itt 
0.02574 
0.00117 
0.16435 
0.04593 
0.03897 
0.78356 

.fcrF 
iF 
btlLiF 
iLi 
bt2LiF 
bt3LiF 

jfoF 
1.14794 
0 . 0 2 1 1 6  
0.07117 
0.00040 
0.07090 
0.07089 

iF 
0.02116 
5.55512 
0.01821 
0.00004 
0.01825 
0.01826 

btlLiF 
0.07117 
0.01821 
0.93397 
0.00094 
0.06831 
0.06832 

iLi 
0.00040 
0.00004 
0.00094 
1.68609 
0.00097 
0.00097 

bt2LiF 
0.07090 
0.01825 
0.06831 
0.00097 
0.93678 
0.06847 

bt3LiF 
0.07089 
0.01826 
0.06832 
0.00097 
0.06847 
0.93694 

At F 
iF 
btlLiF 
iLi 
bt2LiF 
bt3LiF 

la 
0.08374 
-0.98935 
0.06878 
-0.00192 
0.06866 
0.06867 

2a 
•0.01472 
0.00546 
0.04046 
0.99729 
0.04191 
0.04201 

3d" 
•0.48072 
-0.14461 
•0.49701 
0.05585 
•0.49389 
•0.49897 

4a 
0.87254 
0.01537 
-0.26200 
0.04778 
-0.28867 
-0.29013 

Itt 
-0.01864 
-0.00002 
0.80942 
0.00007 
-0.26422 
-0. 52409 

Itt"" 
0.00259 

-0 .00001  
-0.15100 

0 .00001  
0.76909 
-0.62104 
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oLi . 
AtF 0.01051 
iF -0.00315 
btlLiF-0.01241 
iLi 1.00172 
bt2LiF-0.01290 
bt3LiF-0.01290 

LiF (SAO) 

s Li per Li 
-0.07774 -0.05498 
0.00801 0.01045 
0.C5700 0.05486 
0.00986 -0.01097 
0.06024 0.05753 
0.06042 0.05767 

oF sF pcrF 
AJF 0. 08126 0. 57000 -0. 83388 
iF -0. 99192 0. 12536 -0. 00965 
btlLiF 0. 05815 0. 44664 0. 27786 
iLi -0. 00217 -0. 02159 -0. 03180 
bt2LiF 0. 05781 0. 44519 0. 30405 
bt3LiF 0. 05781 0. 44509 0. 30549 

Figure 23 (Continued) 

prrLi pfrLi 
0.00671 -0.00093 
0.00001 0.00000 
0.29124 0.05433 
0.00002 -0.00000 
0.09507 -0.27673 
0.18858 0.22346 

prrF 
0.01657 
0.00002 
0.71950 
0.00006 
0.23487 
0.46587 

pfrF 
-0.00231 
0.00001 
0.13423 
-0.00001 
-0.68365 
0.55205 
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CO (SAO) 

la 2a 3a 4a 5ct • Itt Itt 
1er 4.78140 0. 00000 0. 05935 0. 03355 0. 00550 0. 01707 0. 01707 
2a 0.00000 3. 54186 0. 01344 0. 02039 0. 02694 0. 00461 0. 00461 
3a 0.05935 0. 01344 0. 78729 0. 09608 0. 03380 0. 12332 0. 12332 
4a 0.03355 0. 02039 0. 09608 0. 72241 •o. 10878 0. 05037 0. 05037 
5a 0.00550 0. 02694 0. 03380 0. 10878 0. 60206 . 0. 02188 0. 02188 
lrr 0.01707 0. 00461 0. 12332 0. 05037 0. 02188 0. 65626 0. 02875 
1ft 0.01707 0. 00461 0. 12332 0. 05037 0. 02188 0. 02875 0. 65626 

btlCO bt2C0 iC tes 0 terC- bt3CO iO 
btlCO 0 .78814 0. 05271 0 .00370 0. 05529 0. 02094 0. 05271 0. 01222 
bt2C0 0 .05271 0. 78823 0 .00370 0. 05527 0. 02093 0. 05271 0. 01221 
iC 0 .00370 0. 00370 3 .62662 0. 00132 0. 00977 0. 00370 0. 00003 
A70 0 .05529 0. 05527 0 .00132 0. 96696 0. 00199 0. 05527 0. 01546 
JbC 0 .02094 0. 02093 0 .00977 0. 00199 0. 67426 0. 02093 0. 00059 
bt3C0 0 .05271 0. 05271 0 .00370 0. 05527 0. 02093 0. 78823 0. 01221 
10 0 V01222. 0. 01221 0 .00003 0. 01546 0. 00059 0. 01221 4. 90985 

bt3CO 
iO 

Figure 24. 

1er 
btlCO 0.05540 
bt2C0 0.05536 
iC -0.00078 
AJO -0.10093 
jtrC -0.01200 

0.05536 
0;99019 
Data for 
from SCF 

2a 3cr % 5ct Itt Iff 
-0.03233 -0.54368 0.12951 0.12813 0.55333 0.60077 
-0.03249 -0.54393 0.13045 0.12858 0.24374 -0.77914 
-0.99182 0.06030 -0.07625 0.08273 -0.00003 0.00008 
-0.02192 0.28531 0.88763 0.34647 0.00059 0.00054 
-0.11254 -0.11611 0.38742 -0.90753 0.00002 0.00000 
-0.03239 -0.54395 0.13056 0.12860 -0.79650 0.17893 
0.00106 0.11896 0.07327 0.00283 0.00001 -0.00000 

IMO's of CO: exchange integrals for SCF MO's and LMO's, transformation matrix 
MO1 s to LMO's, and LCAO expansions of 1240's. 
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CO (SAO) 

oC 
btlCO 0.00868 
bt2C0 0.00858 
iC -0.99570 
SaO -0.00553 
toC -0.11880 
bt3C0 0.00869 
10 -0.00291 

sC 
•0. 10075 
-0. 10097 
0.09879 
0.14415 
•0.90341 
•0.10102 
-0.00180 

pcrC 
-0.17274 
-0.17309 
-0.03737 
-0.20797 
0.46728 
-0.17311 
0.01978 

• oO sO poO 
btlCO-O.03016 -0.31530 -0.26001 
bt2CO-0.03008 -0.31487 -0.26086 
iC -0.00111 0.00426 0.02634 
jfcrO 0.11723 0.78849 -0.65111 
toC 0.01700 0.12886 0.12563 
bt3C0~0.03008 -0.31481 -0.26094 
10 -0.99346 0.11497 -0.02691 

Figure 24.(Continued) 

prrC pfrC 
0.25931 -0.28154 
0.11423 0.36514 
0.00001 -0.00004 
0.00028 -0.00025 
0.00001 -0.00000 
0.37327 -0.08385 
0.00000 0.00000 

prrO pfrO 
0.42676 -0.46334 
0.18799 0*60091 
0.00002 -0.00006 
0.00045 -0.00041 
0.00001 -0.00000 
0.61429 -0.13800 
0.00001 0.00000 
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LiH(BMO) 

oLi sLi paLi oH 
iLi 0.99625 -0.04100 -0.04758 -0.12845 
bcrLiH -0.11140 -0.29968 -0.20615 -0.69209 

BH(BMO) 
oB sB pcrB oH 

iB 0.97572 -0.21276 0.08121 -0.00002 

baBH -0.04858 -0.57169 -0.59112 -0.55452 
Has, 0.19271 0.85142 -0.50180 -0.24568 

NH(BMO) 
oN sN pcrN prrN pfrN oH 

IN 0.99602 -0.08260 -0.01716 0.00000 0.00000 -0.05542 

btlNH 0.05588 0.47015 0.08801 -0.57985 -0.57482 0.15747 
bt2NH -0.05588 -0.47015 -0.08801 0.20792 -0.78961 -0.15747 
bt3NH -0.05588 -0.47015 -0.08801 -0.78775 0.21471 -0.15747 

HF(BMO) 

iF 

oF 
0.99161 —0. 

sF 
12724 0. 

pcrF 
02268 0. 11 o o 0. 

prrF 
00000 0 

oH 
.00004 

itlF 0.07279 0. 51829 —0 • 27840 —0 • 15180 -0. 80094 -0 .16979 

it2F 0.07279 0. 51829 —0 • 27840 0. 77090 0. 27077 -0 .16979 

Jlt3F 0.07279 0. 51929 —0 • 27840 -0 « 61861 0. 53598 -0 .16979 

bcrHF 0.04258 0. 42672 0. 55059 0. 00000 0. 00000 0 .45112 

Figure 25. Data for the VMO's of the diatomic hydrids: LCA.0 expansions. 
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Li2(BMO) 

oLi s Li parLi 
•iLi 1.00057 0.06991 0.01553 
iU' 0.00181 -0.04074 -0.01107 
baLiLi'. 0.05985 0.51715 0.11282 

oLi sLi per Li 
0.00181 -0.04074 -0.01107 
1.00057 0.06991 0.01553 
0.05985 0.51715 0.11282 

N2(BM0) 

oN sN PctN PttN prrN 
iN -0.95666 -0.01595 0.15477 0. 00000 0.00000 
iN' . 0.03088 -0.15247 0.20921 0. 00000 0.00000 

-fcrN -0.10213 0.85949 -0.49586 0. 00000 0.00000 

-0.27231 -0.24229 -0.17158 0. 00000 0.00000 

btlNN ' 0.03467 0.23298 0.19599 0. 24826 -0.44263 

bt2NN' 0.03467 0.23298 0.19599 0. 25976 0.43607 

bt3NN' 0.03467 0.23298 0.19599 —0 « 50696 0.00668 
oN' sN' pcrN1 pnN1 prrN1 

iN 0.03086 -0.15247 0.20921 0. ,00000 0.00000 

iN' -0.95666 -0.01595 0.15477 0. ,00000 0.00000 

itrN -0.27231 -0.24229 -0.17158 0. ,00000 0.00000 

-foN' -0.10213 0.85949 -0.49586 0. ,00000 0.00000 

btlNN1 0.03467. 0.23298 0.19599 0. 24826 -0.44263 

bt2NN1 0.03467 0.23298 0.19599 0. 25976 0.43607 

bt3NN' 0.03467 0.23298 0.19599 0. ,25976 0.43607 

Figure 26. Data for the VMO's of the homonuclear diatomics: LCAO 
expansions. 
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